ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492890" target="_blank" >RIV/00216208:11320/24:10492890 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.findings-emnlp.129" target="_blank" >https://aclanthology.org/2024.findings-emnlp.129</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
Popis výsledku v původním jazyce
Aspect-Sentiment Triplet Extraction (ASTE) is a recently proposed task of aspect-based sentiment analysis that consists in extracting (aspect phrase, opinion phrase, sentiment polarity) triples from a given sentence. Recent state-of-the-art methods approach this task by first extracting all possible text spans from a given text, then filtering the potential aspect and opinion phrases with a classifier, and finally considering all their pairs with another classifier that additionally assigns sentiment polarity to them. Although several variations of the above scheme have been proposed, the common feature is that the final result is constructed by a sequence of independent classifier decisions. This hinders the exploitation of dependencies between extracted phrases and prevents the use of knowledge about the interrelationships between classifier predictions to improve performance. In this paper, we propose a new ASTE approach consisting of three transformer-inspired layers, which enables the modelling o
Název v anglickém jazyce
ASTE-Transformer: Modelling Dependencies in Aspect-Sentiment Triplet Extraction
Popis výsledku anglicky
Aspect-Sentiment Triplet Extraction (ASTE) is a recently proposed task of aspect-based sentiment analysis that consists in extracting (aspect phrase, opinion phrase, sentiment polarity) triples from a given sentence. Recent state-of-the-art methods approach this task by first extracting all possible text spans from a given text, then filtering the potential aspect and opinion phrases with a classifier, and finally considering all their pairs with another classifier that additionally assigns sentiment polarity to them. Although several variations of the above scheme have been proposed, the common feature is that the final result is constructed by a sequence of independent classifier decisions. This hinders the exploitation of dependencies between extracted phrases and prevents the use of knowledge about the interrelationships between classifier predictions to improve performance. In this paper, we propose a new ASTE approach consisting of three transformer-inspired layers, which enables the modelling o
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Findings of the Association for Computational Linguistics: EMNLP 2024
ISBN
979-8-89176-168-1
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
2324-2339
Název nakladatele
Association for Computational Linguistics
Místo vydání
Kerrville, TX, USA
Místo konání akce
Miami, FL, USA
Datum konání akce
12. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—