Script, Language, and Labels: Overcoming Three Discrepancies for Low-Resource Language Specialization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A4TRGGLZB" target="_blank" >RIV/00216208:11320/23:4TRGGLZB - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167971966&partnerID=40&md5=6436df972a43f6f9853e3d1b266f7090" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85167971966&partnerID=40&md5=6436df972a43f6f9853e3d1b266f7090</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Script, Language, and Labels: Overcoming Three Discrepancies for Low-Resource Language Specialization
Popis výsledku v původním jazyce
"Although multilingual pretrained models (mPLMs) enabled support of various natural language processing in diverse languages, its limited coverage of 100+ languages lets 6500+ languages remain 'unseen'. One common approach for an unseen language is specializing the model for it as target, by performing additional masked language modeling (MLM) with the target language corpus. However, we argue that, due to the discrepancy from multilingual MLM pretraining, a naïve specialization as such can be suboptimal. Specifically, we pose three discrepancies to overcome. Script and linguistic discrepancy of the target language from the related seen languages, hinder a positive transfer, for which we propose to maximize representation similarity, unlike existing approaches maximizing overlaps. In addition, label space for MLM prediction can vary across languages, for which we propose to reinitialize top layers for a more effective adaptation. Experiments over four different language families and three tasks shows that our method improves the task performance of unseen languages with statistical significance, while previous approach fails to. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved."
Název v anglickém jazyce
Script, Language, and Labels: Overcoming Three Discrepancies for Low-Resource Language Specialization
Popis výsledku anglicky
"Although multilingual pretrained models (mPLMs) enabled support of various natural language processing in diverse languages, its limited coverage of 100+ languages lets 6500+ languages remain 'unseen'. One common approach for an unseen language is specializing the model for it as target, by performing additional masked language modeling (MLM) with the target language corpus. However, we argue that, due to the discrepancy from multilingual MLM pretraining, a naïve specialization as such can be suboptimal. Specifically, we pose three discrepancies to overcome. Script and linguistic discrepancy of the target language from the related seen languages, hinder a positive transfer, for which we propose to maximize representation similarity, unlike existing approaches maximizing overlaps. In addition, label space for MLM prediction can vary across languages, for which we propose to reinitialize top layers for a more effective adaptation. Experiments over four different language families and three tasks shows that our method improves the task performance of unseen languages with statistical significance, while previous approach fails to. Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Proc. AAAI Conf. Artif. Intell., AAAI"
ISBN
978-157735880-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
13004-13013
Název nakladatele
AAAI Press
Místo vydání
—
Místo konání akce
Melaka, Malaysia
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—