Structural Contrastive Pretraining for Cross-Lingual Comprehension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AHMJ9ZHA9" target="_blank" >RIV/00216208:11320/23:HMJ9ZHA9 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175492961&partnerID=40&md5=11f69d8b05d3c4ce244f768fa8b01ab7" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175492961&partnerID=40&md5=11f69d8b05d3c4ce244f768fa8b01ab7</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural Contrastive Pretraining for Cross-Lingual Comprehension
Popis výsledku v původním jazyce
"Multilingual language models trained using various pre-training tasks like mask language modeling (MLM) have yielded encouraging results on a wide range of downstream tasks. Despite the promising performances, structural knowledge in cross-lingual corpus is less explored in current works, leading to the semantic misalignment. In this paper, we propose a new pre-training task named Structural Contrast Pretraining (SCP) to align the structural words in a parallel sentence, improving the models' linguistic versatility and their capacity to understand representations in multilingual languages. Concretely, SCP treats each structural word in source and target languages as a positive pair. We further propose Cross-lingual Momentum Contrast (CL-MoCo) to optimize negative pairs by maintaining a large size of the queue. CL-MoCo extends the original MoCo approach into cross-lingual training and jointly optimizes the source-to-target language and target-to-source language representations in SCP, resulting in a more suitable encoder for cross-lingual transfer learning. We conduct extensive experiments and prove the effectiveness of our resulting model, named XLM-SCP, on three cross-lingual tasks across five datasets such as MLQA, WikiAnn. Our codes are available at https://github.com/nuochenpku/SCP. © 2023 Association for Computational Linguistics."
Název v anglickém jazyce
Structural Contrastive Pretraining for Cross-Lingual Comprehension
Popis výsledku anglicky
"Multilingual language models trained using various pre-training tasks like mask language modeling (MLM) have yielded encouraging results on a wide range of downstream tasks. Despite the promising performances, structural knowledge in cross-lingual corpus is less explored in current works, leading to the semantic misalignment. In this paper, we propose a new pre-training task named Structural Contrast Pretraining (SCP) to align the structural words in a parallel sentence, improving the models' linguistic versatility and their capacity to understand representations in multilingual languages. Concretely, SCP treats each structural word in source and target languages as a positive pair. We further propose Cross-lingual Momentum Contrast (CL-MoCo) to optimize negative pairs by maintaining a large size of the queue. CL-MoCo extends the original MoCo approach into cross-lingual training and jointly optimizes the source-to-target language and target-to-source language representations in SCP, resulting in a more suitable encoder for cross-lingual transfer learning. We conduct extensive experiments and prove the effectiveness of our resulting model, named XLM-SCP, on three cross-lingual tasks across five datasets such as MLQA, WikiAnn. Our codes are available at https://github.com/nuochenpku/SCP. © 2023 Association for Computational Linguistics."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Proc. Annu. Meet. Assoc. Comput Linguist."
ISBN
978-195942962-3
ISSN
0736-587X
e-ISSN
—
Počet stran výsledku
16
Strana od-do
2042-2057
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
—
Místo konání akce
Melaka, Malaysia
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—