Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring the Relationship between Alignment and Cross-lingual Transfer in Multilingual Transformers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AXPPSPEE9" target="_blank" >RIV/00216208:11320/23:XPPSPEE9 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175463133&partnerID=40&md5=cd5ea22c37e7c425a68cbb45417daa8b" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85175463133&partnerID=40&md5=cd5ea22c37e7c425a68cbb45417daa8b</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring the Relationship between Alignment and Cross-lingual Transfer in Multilingual Transformers

  • Popis výsledku v původním jazyce

    "Without any explicit cross-lingual training data, multilingual language models can achieve cross-lingual transfer. One common way to improve this transfer is to perform realignment steps before fine-tuning, i.e., to train the model to build similar representations for pairs of words from translated sentences. But such realignment methods were found to not always improve results across languages and tasks, which raises the question of whether aligned representations are truly beneficial for cross-lingual transfer. We provide evidence that alignment is actually significantly correlated with cross-lingual transfer across languages, models and random seeds. We show that fine-tuning can have a significant impact on alignment, depending mainly on the downstream task and the model. Finally, we show that realignment can, in some instances, improve cross-lingual transfer, and we identify conditions in which realignment methods provide significant improvements. Namely, we find that realignment works better on tasks for which alignment is correlated with cross-lingual transfer when generalizing to a distant language and with smaller models, as well as when using a bilingual dictionary rather than FastAlign to extract realignment pairs. For example, for POS-tagging, between English and Arabic, realignment can bring a +15.8 accuracy improvement on distilmBERT, even outperforming XLM-R Large by 1.7. We thus advocate for further research on realignment methods for smaller multilingual models as an alternative to scaling. © 2023 Association for Computational Linguistics."

  • Název v anglickém jazyce

    Exploring the Relationship between Alignment and Cross-lingual Transfer in Multilingual Transformers

  • Popis výsledku anglicky

    "Without any explicit cross-lingual training data, multilingual language models can achieve cross-lingual transfer. One common way to improve this transfer is to perform realignment steps before fine-tuning, i.e., to train the model to build similar representations for pairs of words from translated sentences. But such realignment methods were found to not always improve results across languages and tasks, which raises the question of whether aligned representations are truly beneficial for cross-lingual transfer. We provide evidence that alignment is actually significantly correlated with cross-lingual transfer across languages, models and random seeds. We show that fine-tuning can have a significant impact on alignment, depending mainly on the downstream task and the model. Finally, we show that realignment can, in some instances, improve cross-lingual transfer, and we identify conditions in which realignment methods provide significant improvements. Namely, we find that realignment works better on tasks for which alignment is correlated with cross-lingual transfer when generalizing to a distant language and with smaller models, as well as when using a bilingual dictionary rather than FastAlign to extract realignment pairs. For example, for POS-tagging, between English and Arabic, realignment can bring a +15.8 accuracy improvement on distilmBERT, even outperforming XLM-R Large by 1.7. We thus advocate for further research on realignment methods for smaller multilingual models as an alternative to scaling. © 2023 Association for Computational Linguistics."

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    "Proc. Annu. Meet. Assoc. Comput Linguist."

  • ISBN

    978-195942962-3

  • ISSN

    0736-587X

  • e-ISSN

  • Počet stran výsledku

    23

  • Strana od-do

    3020-3042

  • Název nakladatele

    Association for Computational Linguistics (ACL)

  • Místo vydání

  • Místo konání akce

    Melaka, Malaysia

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku