Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigating semantic subspaces of Transformer sentence embeddings through linear structural probing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A6W347E87" target="_blank" >RIV/00216208:11320/23:6W347E87 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://arxiv.org/abs/2310.11923" target="_blank" >http://arxiv.org/abs/2310.11923</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigating semantic subspaces of Transformer sentence embeddings through linear structural probing

  • Popis výsledku v původním jazyce

    "The question of what kinds of linguistic information are encoded in different layers of Transformer-based language models is of considerable interest for the NLP community. Existing work, however, has overwhelmingly focused on word-level representations and encoder-only language models with the masked-token training objective. In this paper, we present experiments with semantic structural probing, a method for studying sentence-level representations via finding a subspace of the embedding space that provides suitable task-specific pairwise distances between data-points. We apply our method to language models from different families (encoder-only, decoder-only, encoder-decoder) and of different sizes in the context of two tasks, semantic textual similarity and natural-language inference. We find that model families differ substantially in their performance and layer dynamics, but that the results are largely model-size invariant."

  • Název v anglickém jazyce

    Investigating semantic subspaces of Transformer sentence embeddings through linear structural probing

  • Popis výsledku anglicky

    "The question of what kinds of linguistic information are encoded in different layers of Transformer-based language models is of considerable interest for the NLP community. Existing work, however, has overwhelmingly focused on word-level representations and encoder-only language models with the masked-token training objective. In this paper, we present experiments with semantic structural probing, a method for studying sentence-level representations via finding a subspace of the embedding space that provides suitable task-specific pairwise distances between data-points. We apply our method to language models from different families (encoder-only, decoder-only, encoder-decoder) and of different sizes in the context of two tasks, semantic textual similarity and natural-language inference. We find that model families differ substantially in their performance and layer dynamics, but that the results are largely model-size invariant."

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů