Lifting the Curse of Multilinguality by Pre-training Modular Transformers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AE4LEH4U7" target="_blank" >RIV/00216208:11320/23:E4LEH4U7 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2022.naacl-main.255" target="_blank" >https://aclanthology.org/2022.naacl-main.255</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2022.naacl-main.255" target="_blank" >10.18653/v1/2022.naacl-main.255</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifting the Curse of Multilinguality by Pre-training Modular Transformers
Popis výsledku v původním jazyce
"Multilingual pre-trained models are known to suffer from the curse of multilinguality, which causes per-language performance to drop as they cover more languages. We address this issue by introducing language-specific modules, which allows us to grow the total capacity of the model, while keeping the total number of trainable parameters per language constant. In contrast with prior work that learns language-specific components post-hoc, we pre-train the modules of our Cross-lingual Modular (X-Mod) models from the start. Our experiments on natural language inference, named entity recognition and question answering show that our approach not only mitigates the negative interference between languages, but also enables positive transfer, resulting in improved monolingual and cross-lingual performance. Furthermore, our approach enables adding languages post-hoc with no measurable drop in performance, no longer limiting the model usage to the set of pre-trained languages."
Název v anglickém jazyce
Lifting the Curse of Multilinguality by Pre-training Modular Transformers
Popis výsledku anglicky
"Multilingual pre-trained models are known to suffer from the curse of multilinguality, which causes per-language performance to drop as they cover more languages. We address this issue by introducing language-specific modules, which allows us to grow the total capacity of the model, while keeping the total number of trainable parameters per language constant. In contrast with prior work that learns language-specific components post-hoc, we pre-train the modules of our Cross-lingual Modular (X-Mod) models from the start. Our experiments on natural language inference, named entity recognition and question answering show that our approach not only mitigates the negative interference between languages, but also enables positive transfer, resulting in improved monolingual and cross-lingual performance. Furthermore, our approach enables adding languages post-hoc with no measurable drop in performance, no longer limiting the model usage to the set of pre-trained languages."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies"
ISBN
978-1-955917-71-1
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
3479-3495
Název nakladatele
arXiv
Místo vydání
Seattle, USA
Místo konání akce
Seattle, USA
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—