Retrieving Relevant Context to Align Representations for Cross-lingual Event Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AF4NB9QQD" target="_blank" >RIV/00216208:11320/23:F4NB9QQD - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2023.findings-acl.135/" target="_blank" >https://aclanthology.org/2023.findings-acl.135/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18653/v1/2023.findings-acl.135" target="_blank" >10.18653/v1/2023.findings-acl.135</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Retrieving Relevant Context to Align Representations for Cross-lingual Event Detection
Popis výsledku v původním jazyce
"We study the problem of cross-lingual transfer learning for event detection (ED) where models trained on a source language are expected to perform well on data for a new target language. Among a few recent works for this problem, the main approaches involve representation matching (e.g., adversarial training) that aims to eliminate language-specific features from the representations to achieve the language-invariant representations. However, due to the mix of language-specific features with event-discriminative context, representation matching methods might also remove important features for event prediction, thus hindering the performance for ED. To address this issue, we introduce a novel approach for cross-lingual ED where representations are augmented with additional context (i.e., not eliminating) to bridge the gap between languages while enriching the contextual information to facilitate ED. At the core of our method involves a retrieval model that retrieves relevant sentences in the target language for an input sentence to compute augmentation representations. Experiments on three languages demonstrate the state-of-the-art performance of our model for cross-lingual ED."
Název v anglickém jazyce
Retrieving Relevant Context to Align Representations for Cross-lingual Event Detection
Popis výsledku anglicky
"We study the problem of cross-lingual transfer learning for event detection (ED) where models trained on a source language are expected to perform well on data for a new target language. Among a few recent works for this problem, the main approaches involve representation matching (e.g., adversarial training) that aims to eliminate language-specific features from the representations to achieve the language-invariant representations. However, due to the mix of language-specific features with event-discriminative context, representation matching methods might also remove important features for event prediction, thus hindering the performance for ED. To address this issue, we introduce a novel approach for cross-lingual ED where representations are augmented with additional context (i.e., not eliminating) to bridge the gap between languages while enriching the contextual information to facilitate ED. At the core of our method involves a retrieval model that retrieves relevant sentences in the target language for an input sentence to compute augmentation representations. Experiments on three languages demonstrate the state-of-the-art performance of our model for cross-lingual ED."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Findings of the Association for Computational Linguistics: ACL 2023"
ISBN
978-1-959429-62-3
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
2157-2170
Název nakladatele
ACL
Místo vydání
Toronto, Canada
Místo konání akce
Toronto, Canada
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—