Novel favipiravir pattern-based learning model for automated detection of specific language impairment disorder using vowels
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AI26WQDID" target="_blank" >RIV/00216208:11320/23:I26WQDID - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:ETHX9L5G
Výsledek na webu
<a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141870329&doi=10.1007%2fs00521-022-07999-4&partnerID=40&md5=9e10e768ed74b7844d9bc9e538258b69" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85141870329&doi=10.1007%2fs00521-022-07999-4&partnerID=40&md5=9e10e768ed74b7844d9bc9e538258b69</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00521-022-07999-4" target="_blank" >10.1007/s00521-022-07999-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel favipiravir pattern-based learning model for automated detection of specific language impairment disorder using vowels
Popis výsledku v původním jazyce
"Specific language impairment (SLI) is one of the most common diseases in children, and early diagnosis can help to obtain better timely therapy economically. It is difficult and time-consuming for clinicians to accurately detect SLI through standard clinical assessments. Hence, machine learning algorithms have been developed to assist in the accurate diagnosis of SLI. This work aims to investigate the graph of the favipiravir molecule-based feature extraction function and propose an accurate SLI detection model using vowels. We proposed a novel handcrafted machine learning framework. This architecture comprises the favipiravir molecular structure pattern, statistical feature extractor, wavelet packet decomposition (WPD), iterative neighborhood component analysis (INCA), and support vector machine (SVM) classifier. Two feature extraction models, statistical and textural, are employed in the handcrafted feature generation methodology. A new nature-inspired graph-based feature extractor that uses the chemical depiction of the favipiravir (favipiravir became popular with the COVID-19 pandemic) is employed for feature extraction. Finally, the proposed favipiravir pattern, statistical feature extractor, and wavelet packet decomposition are used to create a feature vector. Moreover, a statistical feature extractor is used in this work. The WPD generates multilevel features, and the most meaningful features are selected using the NCA feature selector. Finally, these chosen features are fed to SVM classifier for automated classification. Two validation methods, (i) leave one subject out (LOSO) and (ii) tenfold cross-validations (CV), are used to obtain robust classification results. Our proposed favipiravir pattern-based model developed using a vowel dataset can detect SLI children with an accuracy of 99.87% and 98.86% using tenfold and LOSO CV strategies, respectively. These results demonstrated the high vowel classification ability of the proposed favipiravir pattern-based model. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature."
Název v anglickém jazyce
Novel favipiravir pattern-based learning model for automated detection of specific language impairment disorder using vowels
Popis výsledku anglicky
"Specific language impairment (SLI) is one of the most common diseases in children, and early diagnosis can help to obtain better timely therapy economically. It is difficult and time-consuming for clinicians to accurately detect SLI through standard clinical assessments. Hence, machine learning algorithms have been developed to assist in the accurate diagnosis of SLI. This work aims to investigate the graph of the favipiravir molecule-based feature extraction function and propose an accurate SLI detection model using vowels. We proposed a novel handcrafted machine learning framework. This architecture comprises the favipiravir molecular structure pattern, statistical feature extractor, wavelet packet decomposition (WPD), iterative neighborhood component analysis (INCA), and support vector machine (SVM) classifier. Two feature extraction models, statistical and textural, are employed in the handcrafted feature generation methodology. A new nature-inspired graph-based feature extractor that uses the chemical depiction of the favipiravir (favipiravir became popular with the COVID-19 pandemic) is employed for feature extraction. Finally, the proposed favipiravir pattern, statistical feature extractor, and wavelet packet decomposition are used to create a feature vector. Moreover, a statistical feature extractor is used in this work. The WPD generates multilevel features, and the most meaningful features are selected using the NCA feature selector. Finally, these chosen features are fed to SVM classifier for automated classification. Two validation methods, (i) leave one subject out (LOSO) and (ii) tenfold cross-validations (CV), are used to obtain robust classification results. Our proposed favipiravir pattern-based model developed using a vowel dataset can detect SLI children with an accuracy of 99.87% and 98.86% using tenfold and LOSO CV strategies, respectively. These results demonstrated the high vowel classification ability of the proposed favipiravir pattern-based model. © 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature."
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Neural Computing and Applications"
ISSN
0941-0643
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
6065-6077
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85141870329