ChatGPT: Beginning of an End of Manual Linguistic Data Annotation? Use Case of Automatic Genre Identification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AIWVIF8EH" target="_blank" >RIV/00216208:11320/23:IWVIF8EH - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2303.03953" target="_blank" >http://arxiv.org/abs/2303.03953</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2303.03953" target="_blank" >10.48550/arXiv.2303.03953</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ChatGPT: Beginning of an End of Manual Linguistic Data Annotation? Use Case of Automatic Genre Identification
Popis výsledku v původním jazyce
"ChatGPT has shown strong capabilities in natural language generation tasks, which naturally leads researchers to explore where its abilities end. In this paper, we examine whether ChatGPT can be used for zero-shot text classification, more specifically, automatic genre identification. We compare ChatGPT with a multilingual XLM-RoBERTa language model that was fine-tuned on datasets, manually annotated with genres. The models are compared on test sets in two languages: English and Slovenian. Results show that ChatGPT outperforms the fine-tuned model when applied to the dataset which was not seen before by either of the models. Even when applied on Slovenian language as an under-resourced language, ChatGPT's performance is no worse than when applied to English. However, if the model is fully prompted in Slovenian, the performance drops significantly, showing the current limitations of ChatGPT usage on smaller languages. The presented results lead us to questioning whether this is the beginning of an end of laborious manual annotation campaigns even for smaller languages, such as Slovenian."
Název v anglickém jazyce
ChatGPT: Beginning of an End of Manual Linguistic Data Annotation? Use Case of Automatic Genre Identification
Popis výsledku anglicky
"ChatGPT has shown strong capabilities in natural language generation tasks, which naturally leads researchers to explore where its abilities end. In this paper, we examine whether ChatGPT can be used for zero-shot text classification, more specifically, automatic genre identification. We compare ChatGPT with a multilingual XLM-RoBERTa language model that was fine-tuned on datasets, manually annotated with genres. The models are compared on test sets in two languages: English and Slovenian. Results show that ChatGPT outperforms the fine-tuned model when applied to the dataset which was not seen before by either of the models. Even when applied on Slovenian language as an under-resourced language, ChatGPT's performance is no worse than when applied to English. However, if the model is fully prompted in Slovenian, the performance drops significantly, showing the current limitations of ChatGPT usage on smaller languages. The presented results lead us to questioning whether this is the beginning of an end of laborious manual annotation campaigns even for smaller languages, such as Slovenian."
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů