Predictive keywords: Using machine learning to explain document characteristics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AJ6AK6WYQ" target="_blank" >RIV/00216208:11320/23:J6AK6WYQ - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/articles/10.3389/frai.2022.975729/full" target="_blank" >https://www.frontiersin.org/articles/10.3389/frai.2022.975729/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/frai.2022.975729" target="_blank" >10.3389/frai.2022.975729</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive keywords: Using machine learning to explain document characteristics
Popis výsledku v původním jazyce
"When exploring the characteristics of a discourse domain associated with texts, keyword analysis is widely used in corpus linguistics. However, one of the challenges facing this method is the evaluation of the quality of the keywords. Here, we propose casting keyword analysis as a prediction problem with the goal of discriminating the texts associated with the target corpus from the reference corpus. We demonstrate that, when using linear support vector machines, this approach can be used not only to quantify the discrimination between the two corpora, but also extract keywords. To evaluate the keywords, we develop a systematic and rigorous approach anchored to the concepts of usefulness and relevance used in machine learning. The extracted keywords are compared with the recently proposed text dispersion keyness measure. We demonstrate that that our approach extracts keywords that are highly useful and linguistically relevant, capturing the characteristics of their discourse domain."
Název v anglickém jazyce
Predictive keywords: Using machine learning to explain document characteristics
Popis výsledku anglicky
"When exploring the characteristics of a discourse domain associated with texts, keyword analysis is widely used in corpus linguistics. However, one of the challenges facing this method is the evaluation of the quality of the keywords. Here, we propose casting keyword analysis as a prediction problem with the goal of discriminating the texts associated with the target corpus from the reference corpus. We demonstrate that, when using linear support vector machines, this approach can be used not only to quantify the discrimination between the two corpora, but also extract keywords. To evaluate the keywords, we develop a systematic and rigorous approach anchored to the concepts of usefulness and relevance used in machine learning. The extracted keywords are compared with the recently proposed text dispersion keyness measure. We demonstrate that that our approach extracts keywords that are highly useful and linguistically relevant, capturing the characteristics of their discourse domain."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Frontiers in Artificial Intelligence"
ISSN
2624-8212
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
2023-3-9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—