Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpretable Sentence Representation with Variational Autoencoders and Attention

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AK4LMUVHM" target="_blank" >RIV/00216208:11320/23:K4LMUVHM - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://arxiv.org/abs/2305.02810" target="_blank" >http://arxiv.org/abs/2305.02810</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpretable Sentence Representation with Variational Autoencoders and Attention

  • Popis výsledku v původním jazyce

    "In this thesis, we develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP) while accounting for the unavailability of annotated data. We choose to leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors and their effectiveness in data-efficient learning and interpretable representation learning. As a first contribution, we identify and remove unnecessary components in the functioning scheme of semi-supervised VAEs making them faster, smaller and easier to design. Our second and main contribution is to use VAEs and Transformers to build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data. The first model, Attention-Driven VAE (ADVAE), is able to separately represent and control information about syntactic roles in sentences. The second model, QKVAE, uses separate latent variables to form keys and values for its Transformer decoder and is able to separate syntactic and semantic information in its neural representations. In transfer experiments, QKVAE has competitive performance compared to supervised models and equivalent performance to a supervised model using 50K annotated samples. Additionally, QKVAE displays improved syntactic role disentanglement capabilities compared to ADVAE. Overall, we demonstrate that it is possible to enhance the interpretability of state-of-the-art deep learning architectures for language modeling with unannotated data in situations where text data is abundant but annotations are scarce."

  • Název v anglickém jazyce

    Interpretable Sentence Representation with Variational Autoencoders and Attention

  • Popis výsledku anglicky

    "In this thesis, we develop methods to enhance the interpretability of recent representation learning techniques in natural language processing (NLP) while accounting for the unavailability of annotated data. We choose to leverage Variational Autoencoders (VAEs) due to their efficiency in relating observations to latent generative factors and their effectiveness in data-efficient learning and interpretable representation learning. As a first contribution, we identify and remove unnecessary components in the functioning scheme of semi-supervised VAEs making them faster, smaller and easier to design. Our second and main contribution is to use VAEs and Transformers to build two models with inductive bias to separate information in latent representations into understandable concepts without annotated data. The first model, Attention-Driven VAE (ADVAE), is able to separately represent and control information about syntactic roles in sentences. The second model, QKVAE, uses separate latent variables to form keys and values for its Transformer decoder and is able to separate syntactic and semantic information in its neural representations. In transfer experiments, QKVAE has competitive performance compared to supervised models and equivalent performance to a supervised model using 50K annotated samples. Additionally, QKVAE displays improved syntactic role disentanglement capabilities compared to ADVAE. Overall, we demonstrate that it is possible to enhance the interpretability of state-of-the-art deep learning architectures for language modeling with unannotated data in situations where text data is abundant but annotations are scarce."

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů