Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Romanian Multiword Expression Detection Using Multilingual Adversarial Training and Lateral Inhibition

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ANJN76SBY" target="_blank" >RIV/00216208:11320/23:NJN76SBY - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161461930&partnerID=40&md5=e9d60a8caf5041520b5966a5dbebdf2c" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85161461930&partnerID=40&md5=e9d60a8caf5041520b5966a5dbebdf2c</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Romanian Multiword Expression Detection Using Multilingual Adversarial Training and Lateral Inhibition

  • Popis výsledku v původním jazyce

    "Multiword expressions are a key ingredient for developing large-scale and linguistically sound natural language processing technology. This paper describes our improvements in automatically identifying Romanian multiword expressions on the corpus released for the PARSEME v1.2 shared task. Our approach assumes a multilingual perspective based on the recently introduced lateral inhibition layer and adversarial training to boost the performance of the employed multilingual language models. With the help of these two methods, we improve the F1-score of XLM-RoBERTa by approximately 2.7% on unseen multiword expressions, the main task of the PARSEME 1.2 edition. In addition, our results can be considered SOTA performance, as they outperform the previous results on Romanian obtained by the participants in this competition. © 2023 Association for Computational Linguistics."

  • Název v anglickém jazyce

    Romanian Multiword Expression Detection Using Multilingual Adversarial Training and Lateral Inhibition

  • Popis výsledku anglicky

    "Multiword expressions are a key ingredient for developing large-scale and linguistically sound natural language processing technology. This paper describes our improvements in automatically identifying Romanian multiword expressions on the corpus released for the PARSEME v1.2 shared task. Our approach assumes a multilingual perspective based on the recently introduced lateral inhibition layer and adversarial training to boost the performance of the employed multilingual language models. With the help of these two methods, we improve the F1-score of XLM-RoBERTa by approximately 2.7% on unseen multiword expressions, the main task of the PARSEME 1.2 edition. In addition, our results can be considered SOTA performance, as they outperform the previous results on Romanian obtained by the participants in this competition. © 2023 Association for Computational Linguistics."

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    "Workshop Multiword Expressions, MWE - Proc."

  • ISBN

    978-195942959-3

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    7

  • Strana od-do

    7-13

  • Název nakladatele

    Association for Computational Linguistics

  • Místo vydání

  • Místo konání akce

    Melaka, Malaysia

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku