The risk co-de model: detecting psychosocial processes of risk perception in natural language through machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ANTXATQRM" target="_blank" >RIV/00216208:11320/23:NTXATQRM - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/25:6ZEIXEB6
Výsledek na webu
<a href="https://link.springer.com/10.1007/s42001-023-00235-6" target="_blank" >https://link.springer.com/10.1007/s42001-023-00235-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42001-023-00235-6" target="_blank" >10.1007/s42001-023-00235-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The risk co-de model: detecting psychosocial processes of risk perception in natural language through machine learning
Popis výsledku v původním jazyce
"Abstractn This paper presents a classification system (risk Co-De model) based on a theoretical model that combines psychosocial processes of risk perception, including denial, moral disengagement, and psychological distance, with the aim of classifying social media posts automatically, using machine learning algorithms. The risk Co-De model proposes four macro-categories that include nine micro-categories defining the stance towards risk, ranging from Consciousness to Denial (Co-De). To assess its effectiveness, a total of 2381 Italian tweets related to risk events (such as the Covid-19 pandemic and climate change) were manually annotated by four experts according to the risk Co-De model, creating a training set. Each category was then explored to assess its peculiarity by detecting co-occurrences and observing prototypical tweets classified as a whole. Finally, machine learning algorithms for classification (Support Vector Machine and Random Forest) were trained starting from a text chunks x (multilevel) features matrix. The Support Vector Machine model trained on the four macro-categories achieved an overall accuracy of 86% and a macro-average F1 score of 0.85, indicating good performance. The application of the risk Co-De model addresses the challenge of automatically identifying psychosocial processes in natural language, contributing to the understanding of the human approach to risk and informing tailored communication strategies."
Název v anglickém jazyce
The risk co-de model: detecting psychosocial processes of risk perception in natural language through machine learning
Popis výsledku anglicky
"Abstractn This paper presents a classification system (risk Co-De model) based on a theoretical model that combines psychosocial processes of risk perception, including denial, moral disengagement, and psychological distance, with the aim of classifying social media posts automatically, using machine learning algorithms. The risk Co-De model proposes four macro-categories that include nine micro-categories defining the stance towards risk, ranging from Consciousness to Denial (Co-De). To assess its effectiveness, a total of 2381 Italian tweets related to risk events (such as the Covid-19 pandemic and climate change) were manually annotated by four experts according to the risk Co-De model, creating a training set. Each category was then explored to assess its peculiarity by detecting co-occurrences and observing prototypical tweets classified as a whole. Finally, machine learning algorithms for classification (Support Vector Machine and Random Forest) were trained starting from a text chunks x (multilevel) features matrix. The Support Vector Machine model trained on the four macro-categories achieved an overall accuracy of 86% and a macro-average F1 score of 0.85, indicating good performance. The application of the risk Co-De model addresses the challenge of automatically identifying psychosocial processes in natural language, contributing to the understanding of the human approach to risk and informing tailored communication strategies."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Journal of Computational Social Science"
ISSN
2432-2717
e-ISSN
—
Svazek periodika
""
Číslo periodika v rámci svazku
2023-11-30
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
1-23
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—