A Novel Tool for Supervised Segmentation Using 3D Slicer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129719" target="_blank" >RIV/00216305:26220/18:PU129719 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/10/11/627" target="_blank" >https://www.mdpi.com/2073-8994/10/11/627</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym10110627" target="_blank" >10.3390/sym10110627</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Novel Tool for Supervised Segmentation Using 3D Slicer
Popis výsledku v původním jazyce
The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.
Název v anglickém jazyce
A Novel Tool for Supervised Segmentation Using 3D Slicer
Popis výsledku anglicky
The rather impressive extension library of medical image-processing platform 3D Slicer lacks a wide range of machine-learning toolboxes. The authors have developed such a toolbox that incorporates commonly used machine-learning libraries. The extension uses a simple graphical user interface that allows the user to preprocess data, train a classifier, and use that classifier in common medical image-classification tasks, such as tumor staging or various anatomical segmentations without a deeper knowledge of the inner workings of the classifiers. A series of experiments were carried out to showcase the capabilities of the extension and quantify the symmetry between the physical characteristics of pathological tissues and the parameters of a classifying model. These experiments also include an analysis of the impact of training vector size and feature selection on the sensitivity and specificity of all included classifiers. The results indicate that training vector size can be minimized for all classifiers. Using the data from the Brain Tumor Segmentation Challenge, Random Forest appears to have the widest range of parameters that produce sufficiently accurate segmentations, while optimal Support Vector Machines’ training parameters are concentrated in a narrow feature space.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/NV18-08-00459" target="_blank" >NV18-08-00459: Prostorová analýza silového zatížení deformované rostoucí páteře a využití modelování korekčních sil k minimalizaci rozsahu operace skoliozy.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
000451165100094
EID výsledku v databázi Scopus
2-s2.0-85057783248