Pediatric Spine Segmentation and Modeling Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F65269705%3A_____%2F19%3A00072859" target="_blank" >RIV/65269705:_____/19:00072859 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/19:PU134032
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pediatric Spine Segmentation and Modeling Using Machine Learning
Popis výsledku v původním jazyce
Scoliosis embodies the most frequent three-dimensional spinal deformity in children. Only timely treatment during the growth of the spine may significantly reduce related health problems inflicted by the deformity on adults. The results obtained via conservative therapy are problematic, and a certain degree of curvature already requires surgical treatment that at the time of writing consists of repeated spinal surgeries posing a high risk of complications. The aim is to use a spine model for computer based simulation of changes in the stress on the spine during idiopathic and syndromic deformity correction via vertebral osteotomy. A machine-learning toolbox for 3D Slicer has been developed. The toolbox has a form of an application extension. Preprocessing of the data, training and usage of the classifier is possible through a simple and modern graphical user interface. The extension is capable of performing a variety of helpful tasks such as an analysis of the impact of the size of the training s ector and feature selection on classifier precision. The results suggest that the training vector size can be minimized for all of the tested classifiers. Furthermore, the random forest classifier's performance seems to be resistant to training parameter changes. Support vector machine is sensitive to training parameter changes with optimal values concentrated in a narrow feature space.
Název v anglickém jazyce
Pediatric Spine Segmentation and Modeling Using Machine Learning
Popis výsledku anglicky
Scoliosis embodies the most frequent three-dimensional spinal deformity in children. Only timely treatment during the growth of the spine may significantly reduce related health problems inflicted by the deformity on adults. The results obtained via conservative therapy are problematic, and a certain degree of curvature already requires surgical treatment that at the time of writing consists of repeated spinal surgeries posing a high risk of complications. The aim is to use a spine model for computer based simulation of changes in the stress on the spine during idiopathic and syndromic deformity correction via vertebral osteotomy. A machine-learning toolbox for 3D Slicer has been developed. The toolbox has a form of an application extension. Preprocessing of the data, training and usage of the classifier is possible through a simple and modern graphical user interface. The extension is capable of performing a variety of helpful tasks such as an analysis of the impact of the size of the training s ector and feature selection on classifier precision. The results suggest that the training vector size can be minimized for all of the tested classifiers. Furthermore, the random forest classifier's performance seems to be resistant to training parameter changes. Support vector machine is sensitive to training parameter changes with optimal values concentrated in a narrow feature space.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20600 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/NV18-08-00459" target="_blank" >NV18-08-00459: Prostorová analýza silového zatížení deformované rostoucí páteře a využití modelování korekčních sil k minimalizaci rozsahu operace skoliozy.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2019 11th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)
ISBN
978-1-72815-763-4
ISSN
2157-0221
e-ISSN
—
Počet stran výsledku
5
Strana od-do
"nestrankovano“"
Název nakladatele
IEEE
Místo vydání
NEW YORK
Místo konání akce
Dublin
Datum konání akce
28. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000540651700045