Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-view fusion for universal translation quality estimation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3APEVAZN2Q" target="_blank" >RIV/00216208:11320/23:PEVAZN2Q - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.inffus.2023.102022" target="_blank" >10.1016/j.inffus.2023.102022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-view fusion for universal translation quality estimation

  • Popis výsledku v původním jazyce

    "Machine translation quality estimation (QE) aims to evaluate the result of translation without reference. Despite the progress it has made, state-of-the-art QE models are proven to be biased. More specifically, they over-rely on spurious statistical features while ignoring the bilingual semantic adequacy, leading to performance degradation. Besides, existing approaches require large amounts of annotation data, restricting their applications in new domains and languages. In this work, we propose a universal framework for quality estimation based on multi-view fusion. We first introduce noise to the target side of the parallel sentence pair, either by pre-trained language model or by large language model. After that, with the clean parallel pairs and the noised pairs as different views, the QE model is trained to distinguish the clean pairs from the noised ones. Our method can improve the accuracy and generalizability in supervised scenario, and can solely perform estimation in zero-shot scenario. We perform experiments on WMT QE evaluation datasets under different scenarios, verifying the effectiveness of our method. We also make an in-depth investigation of the bias of QE model."

  • Název v anglickém jazyce

    Multi-view fusion for universal translation quality estimation

  • Popis výsledku anglicky

    "Machine translation quality estimation (QE) aims to evaluate the result of translation without reference. Despite the progress it has made, state-of-the-art QE models are proven to be biased. More specifically, they over-rely on spurious statistical features while ignoring the bilingual semantic adequacy, leading to performance degradation. Besides, existing approaches require large amounts of annotation data, restricting their applications in new domains and languages. In this work, we propose a universal framework for quality estimation based on multi-view fusion. We first introduce noise to the target side of the parallel sentence pair, either by pre-trained language model or by large language model. After that, with the clean parallel pairs and the noised pairs as different views, the QE model is trained to distinguish the clean pairs from the noised ones. Our method can improve the accuracy and generalizability in supervised scenario, and can solely perform estimation in zero-shot scenario. We perform experiments on WMT QE evaluation datasets under different scenarios, verifying the effectiveness of our method. We also make an in-depth investigation of the bias of QE model."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "INFORMATION FUSION"

  • ISSN

    1566-2535

  • e-ISSN

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    2024-2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Kód UT WoS článku

    001083713100001

  • EID výsledku v databázi Scopus