Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Smaller and Better Word Embedding for Neural Machine Translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ASGHGDUL7" target="_blank" >RIV/00216208:11320/23:SGHGDUL7 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1" target="_blank" >https://www.webofscience.com/wos/woscc/summary/e0b8ef34-8e6b-412a-9b8f-87607433ed44-bb92f483/relevance/1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/access.2023.3270171" target="_blank" >10.1109/access.2023.3270171</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Smaller and Better Word Embedding for Neural Machine Translation

  • Popis výsledku v původním jazyce

    "Word embeddings play an important role in Neural Machine Translation (NMT). However, it still has a series of problems such as ignoring the prior knowledge of the association between words, relying on specific task constraints passively in parameter training, and isolating individual embedding's learning process from one another. In this paper, we propose a new word embedding method to add the prior knowledge of the association between words to the training process, and at the same time to share the iterative training results among all word embeddings. This method is applicable to all mainstream NMT systems. In our experiments, it achieves an improvement of +0.9 BLEU points on the WMT'14 English?German task. On the Global Voices v2018q4 Spanish?Czech low-resource translation tasks, it leads to a more prominent performance improvement over the strong baselines (a +2.6 BLEU improvement on average). As another "bonus", the new word embedding has far fewer parameters than the traditional word embedding, even as low as 15% of the parameters of the baselines."

  • Název v anglickém jazyce

    A Smaller and Better Word Embedding for Neural Machine Translation

  • Popis výsledku anglicky

    "Word embeddings play an important role in Neural Machine Translation (NMT). However, it still has a series of problems such as ignoring the prior knowledge of the association between words, relying on specific task constraints passively in parameter training, and isolating individual embedding's learning process from one another. In this paper, we propose a new word embedding method to add the prior knowledge of the association between words to the training process, and at the same time to share the iterative training results among all word embeddings. This method is applicable to all mainstream NMT systems. In our experiments, it achieves an improvement of +0.9 BLEU points on the WMT'14 English?German task. On the Global Voices v2018q4 Spanish?Czech low-resource translation tasks, it leads to a more prominent performance improvement over the strong baselines (a +2.6 BLEU improvement on average). As another "bonus", the new word embedding has far fewer parameters than the traditional word embedding, even as low as 15% of the parameters of the baselines."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "IEEE ACCESS"

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    2023

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    40770-40778

  • Kód UT WoS článku

    001033140800001

  • EID výsledku v databázi Scopus