Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sentiment Component Extraction from Dependency Parse for Hindi

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3ATRK6H5P7" target="_blank" >RIV/00216208:11320/23:TRK6H5P7 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164666277&doi=10.1007%2f978-981-99-1624-5_36&partnerID=40&md5=cc3aa8abf021617cffc4bdd9e120ae9a" target="_blank" >https://www.scopus.com/inward/record.uri?eid=2-s2.0-85164666277&doi=10.1007%2f978-981-99-1624-5_36&partnerID=40&md5=cc3aa8abf021617cffc4bdd9e120ae9a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-1624-5_36" target="_blank" >10.1007/978-981-99-1624-5_36</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sentiment Component Extraction from Dependency Parse for Hindi

  • Popis výsledku v původním jazyce

    "With the advent of Web 2.0, Natural Language Processing (NLP) gained attention and a new dimension in the NLP application arena. Sentiment analysis is one such popular modern NLP application that tries to extract the feeling, emotions, opinions, etc., expressed in digital text using NLP techniques. Sentiment analysis has become a subtle application over the last decade and found a firm foundation in AI applications. This is especially applicable to product services, reviews, and recommendations domains. It tries to quantify the sentiment better and helps understand the views expressed in a text leading to better decision-making. There is a variety of approaches available for carrying out sentiment analysis ranging from naive to sophisticated machine learning approaches. However, less attention is being paid to linguistics aspects. We undertook a study to project sentiment analysis concerning linguistic dimensions of natural language text which is the least-explored approach to sentiment analysis. Sentiment components of a text are deeply rooted in its syntactic constituents. The only way to figure out the syntactic constituents is parsing. We have tried to portray the use of dependency parsing for extracting the sentiment components from Hindi input text. We have explored the applications of various dependency relations to derive the possible sentiment compositionality from Hindi sentences. Our study and findings related to sentiment components extraction from dependency parse are presented in this paper with a linguistic insight. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd."

  • Název v anglickém jazyce

    Sentiment Component Extraction from Dependency Parse for Hindi

  • Popis výsledku anglicky

    "With the advent of Web 2.0, Natural Language Processing (NLP) gained attention and a new dimension in the NLP application arena. Sentiment analysis is one such popular modern NLP application that tries to extract the feeling, emotions, opinions, etc., expressed in digital text using NLP techniques. Sentiment analysis has become a subtle application over the last decade and found a firm foundation in AI applications. This is especially applicable to product services, reviews, and recommendations domains. It tries to quantify the sentiment better and helps understand the views expressed in a text leading to better decision-making. There is a variety of approaches available for carrying out sentiment analysis ranging from naive to sophisticated machine learning approaches. However, less attention is being paid to linguistics aspects. We undertook a study to project sentiment analysis concerning linguistic dimensions of natural language text which is the least-explored approach to sentiment analysis. Sentiment components of a text are deeply rooted in its syntactic constituents. The only way to figure out the syntactic constituents is parsing. We have tried to portray the use of dependency parsing for extracting the sentiment components from Hindi input text. We have explored the applications of various dependency relations to derive the possible sentiment compositionality from Hindi sentences. Our study and findings related to sentiment components extraction from dependency parse are presented in this paper with a linguistic insight. © 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd."

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    "Lecture Notes in Networks and Systems"

  • ISBN

    978-981991623-8

  • ISSN

    2367-3370

  • e-ISSN

  • Počet stran výsledku

    15

  • Strana od-do

    495-509

  • Název nakladatele

    Springer Science and Business Media Deutschland GmbH

  • Místo vydání

    Singapore

  • Místo konání akce

    Singapore

  • Datum konání akce

    1. 1. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku