Corpus Generation to Develop Amharic Morphological Segmenter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AXIX2EJI7" target="_blank" >RIV/00216208:11320/23:XIX2EJI7 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.proquest.com/docview/2883174197/abstract/B90879C438B4510PQ/1" target="_blank" >https://www.proquest.com/docview/2883174197/abstract/B90879C438B4510PQ/1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14569/IJACSA.2023.01409116" target="_blank" >10.14569/IJACSA.2023.01409116</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Corpus Generation to Develop Amharic Morphological Segmenter
Popis výsledku v původním jazyce
"Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages."
Název v anglickém jazyce
Corpus Generation to Develop Amharic Morphological Segmenter
Popis výsledku anglicky
"Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"International Journal of Advanced Computer Science and Applications"
ISSN
2158107X
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
1114 - 1122
Kód UT WoS článku
001084849700001
EID výsledku v databázi Scopus
2-s2.0-85173165158