Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Corpus Generation to Develop Amharic Morphological Segmenter

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AXIX2EJI7" target="_blank" >RIV/00216208:11320/23:XIX2EJI7 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.proquest.com/docview/2883174197/abstract/B90879C438B4510PQ/1" target="_blank" >https://www.proquest.com/docview/2883174197/abstract/B90879C438B4510PQ/1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14569/IJACSA.2023.01409116" target="_blank" >10.14569/IJACSA.2023.01409116</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Corpus Generation to Develop Amharic Morphological Segmenter

  • Popis výsledku v původním jazyce

    "Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages."

  • Název v anglickém jazyce

    Corpus Generation to Develop Amharic Morphological Segmenter

  • Popis výsledku anglicky

    "Morphological segmenter is an important component in Amharic natural language processing systems. Despite this fact, Amharic lacks large amount of morphologically segmented corpus. Large amount of corpus is often a requirement to develop neural network-based language technologies. This paper presents an alternative method to generate large amount of morph-segmented corpus for Amharic language. First, a relatively small (138,400 words) morphologically annotated Amharic seed-corpus is manually prepared. The annotation enables to identify prefixes, stem, and suffixes of a given word. Second, a supervised approach is used to create a conditional random field-based seed-model (on the seed-corpus). Applying the seed-model (an unsupervised technique on a large unsegmented raw Amharic words) for prediction, a large corpus size (3,777,283) of segmented words are automatically generated. Third, the newly generated corpus is used to train an Amharic morphological segmenter (based on a supervised neural sequence-to-sequence (seq2seq) approach using character embeddings). Using the seq2seq method, an F-score of 98.65% was measured. Results show an agreement with previous efforts for Arabic language. The work presented here has profound implications for future studies of Ethiopian language technologies and may one day help solve the problem of the digital-divide between resource-rich and under-resourced languages."

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    "International Journal of Advanced Computer Science and Applications"

  • ISSN

    2158107X

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    1114 - 1122

  • Kód UT WoS článku

    001084849700001

  • EID výsledku v databázi Scopus

    2-s2.0-85173165158