Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Domain-Adaptive Sentiment Analysis Across Online Social Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AZQE33GJT" target="_blank" >RIV/00216208:11320/23:ZQE33GJT - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://openrepository.aut.ac.nz/items/463c433b-a969-4f30-9872-b152ba1bba1a" target="_blank" >https://openrepository.aut.ac.nz/items/463c433b-a969-4f30-9872-b152ba1bba1a</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Domain-Adaptive Sentiment Analysis Across Online Social Networks

  • Popis výsledku v původním jazyce

    "Aspect-based sentiment analysis is an important task in natural language processing and has a wide range of applications in fields such as e-commerce, marketing, and customer service. The goal of this task is to identify aspect and opinion terms and classify the sentiment expressed towards a particular aspect in a given text. Despite its significance, aspect-based sentiment analysis remains a challenging task due to limitations in existing models. These limitations include an inadequate consideration of crucial implicit linguistic features for aspect term extraction, declining performance on unstructured and small datasets for aspect and relation extraction, a complex and varied model landscape for different sub-tasks, and the time-consuming construction of prompts for cross-domain aspect term extraction. In this thesis, these challenges are tackled by employing several innovative deep neural network models."

  • Název v anglickém jazyce

    Domain-Adaptive Sentiment Analysis Across Online Social Networks

  • Popis výsledku anglicky

    "Aspect-based sentiment analysis is an important task in natural language processing and has a wide range of applications in fields such as e-commerce, marketing, and customer service. The goal of this task is to identify aspect and opinion terms and classify the sentiment expressed towards a particular aspect in a given text. Despite its significance, aspect-based sentiment analysis remains a challenging task due to limitations in existing models. These limitations include an inadequate consideration of crucial implicit linguistic features for aspect term extraction, declining performance on unstructured and small datasets for aspect and relation extraction, a complex and varied model landscape for different sub-tasks, and the time-consuming construction of prompts for cross-domain aspect term extraction. In this thesis, these challenges are tackled by employing several innovative deep neural network models."

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů