Bifunctional Pt–Ir nanoparticle catalysts for oxygen reduction and evolution reactions: investigating the influence of surface composition on the catalytic properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10478575" target="_blank" >RIV/00216208:11320/24:10478575 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10478575
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z2ndfzHg3j" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=z2ndfzHg3j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d3se01238g" target="_blank" >10.1039/d3se01238g</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bifunctional Pt–Ir nanoparticle catalysts for oxygen reduction and evolution reactions: investigating the influence of surface composition on the catalytic properties
Popis výsledku v původním jazyce
Unitized regenerative fuel cells (URFCs) can provide renewable, clean energy and hydrogen but require efficient bifunctional catalysts for oxygen reduction (ORR) and evolution reactions (OER). In this study, we present iridium-decorated platinum nanoparticles with three different compositions, Ir(10)/Pt(90), Ir(20)/Pt(80), and Ir(40)/Pt(60). The nanoparticles' morphology and chemical structure were analysed before and after electrochemical activation to determine the optimal composition of the catalyst with the highest efficiency towards ORR and OER. Ir(40)/Pt(60) showed the highest mass activity towards OER of 571.4 mA mg_Ir(-1) at 1.525 V(RHE), which was 1.5 times higher compared to commercial Ir black with 371.1 mA mg_Ir(-1). In addition, the mass activity for ORR exhibited a positive correlation with the total of surface Pt active sites but decreased with the coverage of Pt nanoparticles by decorating Ir nanoparticles. Among the studied bimetallic nanoparticles, Ir(20)/Pt(80) exhibited the highest efficiency at 57.7% and was considered the most promising URFC catalyst. Unitized regenerative fuel cells demand efficient bifunctional catalysts for oxygen reduction and evolution reactions. Here, we study iridium-decorated platinum nanoparticles. Ir(40)/Pt(60) displayed the highest OER mass activity, surpassing Ir black, whereas Ir(20)/Pt(80) showed the highest efficiency.
Název v anglickém jazyce
Bifunctional Pt–Ir nanoparticle catalysts for oxygen reduction and evolution reactions: investigating the influence of surface composition on the catalytic properties
Popis výsledku anglicky
Unitized regenerative fuel cells (URFCs) can provide renewable, clean energy and hydrogen but require efficient bifunctional catalysts for oxygen reduction (ORR) and evolution reactions (OER). In this study, we present iridium-decorated platinum nanoparticles with three different compositions, Ir(10)/Pt(90), Ir(20)/Pt(80), and Ir(40)/Pt(60). The nanoparticles' morphology and chemical structure were analysed before and after electrochemical activation to determine the optimal composition of the catalyst with the highest efficiency towards ORR and OER. Ir(40)/Pt(60) showed the highest mass activity towards OER of 571.4 mA mg_Ir(-1) at 1.525 V(RHE), which was 1.5 times higher compared to commercial Ir black with 371.1 mA mg_Ir(-1). In addition, the mass activity for ORR exhibited a positive correlation with the total of surface Pt active sites but decreased with the coverage of Pt nanoparticles by decorating Ir nanoparticles. Among the studied bimetallic nanoparticles, Ir(20)/Pt(80) exhibited the highest efficiency at 57.7% and was considered the most promising URFC catalyst. Unitized regenerative fuel cells demand efficient bifunctional catalysts for oxygen reduction and evolution reactions. Here, we study iridium-decorated platinum nanoparticles. Ir(40)/Pt(60) displayed the highest OER mass activity, surpassing Ir black, whereas Ir(20)/Pt(80) showed the highest efficiency.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sustainable Energy & Fuels
ISSN
2398-4902
e-ISSN
2398-4902
Svazek periodika
8
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
797-810
Kód UT WoS článku
001143411300001
EID výsledku v databázi Scopus
2-s2.0-85182781457