Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484022" target="_blank" >RIV/00216208:11320/24:10484022 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10255848
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=rh.jXL-TGN</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.110.085306" target="_blank" >10.1103/PhysRevB.110.085306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure
Popis výsledku v původním jazyce
Effective control of interlayer interactions is a key element in modifying the properties of van der Waals heterostructures and the next step toward their practical applications. Focusing on the phosphorene-WSe2 heterostructure, we demonstrate, using first-principles calculations, proximity-induced amplification of the spin-orbit coupling in phosphorene by applying vertical pressure. We simulate external pressure by changing the interlayer distance between bilayer constituents and show that it is possible to tune the spin-orbit field of phosphorene holes in a controllable way. By fitting effective electronic states of the proposed Hamiltonian to the first-principles data, we reveal that the spin-orbit coupling in phosphorene hole bands is enhanced more than two times for experimentally accessible pressures up to 17 kbar. Correspondingly, we find that the pressure-enhanced spin-orbit coupling boosts the Dyakonov-Perel spin relaxation mechanism, reducing the spin lifetime of phosphorene holes by factor 4. We further explore the role of the lateral shift on the spin-orbit field and reveal that the spin-orbit strength of phosphorene holes can be sizably modulated when strong pressure is applied. We also found that the thermopower is governed mainly by the phosphorene and pressure reduces the overall thermoelectric efficiency of the heterostructure.
Název v anglickém jazyce
Hydrostatic pressure control of the spin-orbit proximity effect, spin relaxation, and thermoelectricity in a phosphorene-WSe2 heterostructure
Popis výsledku anglicky
Effective control of interlayer interactions is a key element in modifying the properties of van der Waals heterostructures and the next step toward their practical applications. Focusing on the phosphorene-WSe2 heterostructure, we demonstrate, using first-principles calculations, proximity-induced amplification of the spin-orbit coupling in phosphorene by applying vertical pressure. We simulate external pressure by changing the interlayer distance between bilayer constituents and show that it is possible to tune the spin-orbit field of phosphorene holes in a controllable way. By fitting effective electronic states of the proposed Hamiltonian to the first-principles data, we reveal that the spin-orbit coupling in phosphorene hole bands is enhanced more than two times for experimentally accessible pressures up to 17 kbar. Correspondingly, we find that the pressure-enhanced spin-orbit coupling boosts the Dyakonov-Perel spin relaxation mechanism, reducing the spin lifetime of phosphorene holes by factor 4. We further explore the role of the lateral shift on the spin-orbit field and reveal that the spin-orbit strength of phosphorene holes can be sizably modulated when strong pressure is applied. We also found that the thermopower is governed mainly by the phosphorene and pressure reduces the overall thermoelectric efficiency of the heterostructure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004572" target="_blank" >EH22_008/0004572: Kvantové materiály pro aplikace v udržitelných technologiích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
110
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
085306
Kód UT WoS článku
001302047000005
EID výsledku v databázi Scopus
2-s2.0-85202748416