Algebraic classification of 2+1 geometries: a new approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484671" target="_blank" >RIV/00216208:11320/24:10484671 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o9ITXZDtm4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=o9ITXZDtm4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6382/ad3ffd" target="_blank" >10.1088/1361-6382/ad3ffd</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic classification of 2+1 geometries: a new approach
Popis výsledku v původním jazyce
We present a convenient method of algebraic classification of 2+1 spacetimes into the types I, II, D, III, N and O, without using any field equations. It is based on the 2+1 analogue of the Newman-Penrose curvature scalars Psi A of distinct boost weights, which are specific projections of the Cotton tensor onto a suitable null triad. The algebraic types are then simply determined by the gradual vanishing of such Cotton scalars, starting with those of the highest boost weight. This classification is directly related to the specific multiplicity of the Cotton-aligned null directions and to the corresponding Bel-Debever criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that our method is fully equivalent to the usual Petrov-type classification of 2+1 spacetimes based on the eigenvalue problem and determining the respective canonical Jordan form of the Cotton-York tensor. We also derive a simple synoptic algorithm of algebraic classification based on the key polynomial curvature invariants. To show the practical usefulness of our approach, we perform the classification of several explicit examples, namely the general class of Robinson-Trautman spacetimes with an aligned electromagnetic field and a cosmological constant, and other metrics of various algebraic types.
Název v anglickém jazyce
Algebraic classification of 2+1 geometries: a new approach
Popis výsledku anglicky
We present a convenient method of algebraic classification of 2+1 spacetimes into the types I, II, D, III, N and O, without using any field equations. It is based on the 2+1 analogue of the Newman-Penrose curvature scalars Psi A of distinct boost weights, which are specific projections of the Cotton tensor onto a suitable null triad. The algebraic types are then simply determined by the gradual vanishing of such Cotton scalars, starting with those of the highest boost weight. This classification is directly related to the specific multiplicity of the Cotton-aligned null directions and to the corresponding Bel-Debever criteria. Using a bivector (that is 2-form) decomposition, we demonstrate that our method is fully equivalent to the usual Petrov-type classification of 2+1 spacetimes based on the eigenvalue problem and determining the respective canonical Jordan form of the Cotton-York tensor. We also derive a simple synoptic algorithm of algebraic classification based on the key polynomial curvature invariants. To show the practical usefulness of our approach, we perform the classification of several explicit examples, namely the general class of Robinson-Trautman spacetimes with an aligned electromagnetic field and a cosmological constant, and other metrics of various algebraic types.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-05914S" target="_blank" >GA23-05914S: Pokročilé techniky aplikované na přesné prostoročasy s černými dírami a gravitačními vlnami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
1361-6382
Svazek periodika
41
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
39
Strana od-do
115008
Kód UT WoS článku
001217293000001
EID výsledku v databázi Scopus
2-s2.0-85192743588