Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algebraic structure of Robinson-Trautman and Kundt geometries in arbitrary dimension

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10290527" target="_blank" >RIV/00216208:11320/15:10290527 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/0264-9381/32/1/015001" target="_blank" >http://dx.doi.org/10.1088/0264-9381/32/1/015001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/0264-9381/32/1/015001" target="_blank" >10.1088/0264-9381/32/1/015001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algebraic structure of Robinson-Trautman and Kundt geometries in arbitrary dimension

  • Popis výsledku v původním jazyce

    We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely

  • Název v anglickém jazyce

    Algebraic structure of Robinson-Trautman and Kundt geometries in arbitrary dimension

  • Popis výsledku anglicky

    We investigate the Weyl tensor algebraic structure of a fully general family of D-dimensional geometries that admit a non-twisting and shear-free null vector field k. From the coordinate components of the curvature tensor we explicitly derive all Weyl scalars of various boost weights. This enables us to give a complete algebraic classification of the metrics in the case when the optically privileged null direction k is a (multiple) Weyl aligned null direction (WAND). No field equations are applied, so the results are valid not only in Einstein's gravity, including its extension to higher dimensions, but also in any metric gravitation theory that admits non-twisting and shear-free spacetimes. We prove that all such geometries are of type I(b), or more special, and we derive surprisingly simple necessary and sufficient conditions under which k is a double, triple or quadruple WAND. All possible algebraically special types, including the refinement to subtypes, are thus identified, namely

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BE - Teoretická fyzika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Classical and Quantum Gravity

  • ISSN

    0264-9381

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    34

  • Strana od-do

  • Kód UT WoS článku

    000347294800001

  • EID výsledku v databázi Scopus

    2-s2.0-84918527068