Spacetimes of Weyl and Ricci type N in higher dimensions
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spacetimes of Weyl and Ricci type N in higher dimensions
Popis výsledku v původním jazyce
We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained.
Název v anglickém jazyce
Spacetimes of Weyl and Ricci type N in higher dimensions
Popis výsledku anglicky
We study the geometrical properties of null congruences generated by an aligned null direction of the Weyl tensor (WAND) in spacetimes of Weyl and Ricci type N (possibly with a non-vanishing cosmological constant) in an arbitrary dimension. We prove that a type N Ricci tensor and a type III or N Weyl tensor have to be aligned. In such spacetimes, the multiple WAND has to be geodetic. For spacetimes with type N aligned Weyl and Ricci tensors, the canonical form of the optical matrix in the twisting and non-twisting cases is derived and the dependence of the Weyl and the Ricci tensors and Ricci rotation coefficients on the affine parameter of the geodetic null congruence generated by the WAND is obtained.
Klasifikace
Druh
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
GB14-37086G: Centrum Alberta Einsteina pro gravitaci a astrofyziku
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Classical and Quantum Gravity
ISSN
0264-9381
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
—
Kód UT WoS článku
000377442000009
EID výsledku v databázi Scopus
2-s2.0-84971571034
Druh výsledku
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP
BA - Obecná matematika
Rok uplatnění
2016