Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484764" target="_blank" >RIV/00216208:11320/24:10484764 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KIVpnVERwt" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=KIVpnVERwt</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jma.2024.05.008" target="_blank" >10.1016/j.jma.2024.05.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique

  • Popis výsledku v původním jazyce

    Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation (RSRC) technique exhibit an exceptional mechanical performance indicating promising application potential. This material has a bimodal microstructure consisting of fine recrystallized and coarse nonrecrystallized grains with solute-rich stacking faults forming cluster arranged layers (CALs) and nanoplates (CANaPs), or complete long period stacking ordered (LPSO) phase. In order to reveal the deformation mechanisms, in-situ synchrotron X-ray diffraction line profile analysis was employed for a detailed study of the dislocation arrangement created during tension in Mg- 0.9% Zn- 2.05% Y- 0.15% Al (at%) alloy. For uncovering the effect of the initial microstructure on the mechanical performance, additional samples were obtained by annealing of the as-consolidated specimen at 300 and 400 degrees C for 2 h. The heat treatment at 300 degrees C had no significant effect on the initial microstructure, its evolution during tension and, thus, the overall deformation behavior under tensile loading. On the other hand, annealing at 400 degrees C resulted in a significant increase of the recrystallized grains fraction and a decrease of the dislocation density, leading to only minor degradation of the mechanical strength. The maximum dislocation density at the failure of the samples corresponding to the plastic strain of 10-25% was estimated to be about 16-20 x 1014 m-2. The diffraction profile analysis indicated that most dislocations formed during tension were of non-basal ( a ) and pyramidal ( c + a ) types, what was also in agreement with the Schmid factor values revealed independently from orientation maps. It was also shown that the dislocation-induced Taylor hardening was much lower below the plastic strain of 3% than above this value, which was explained by a model of the interaction between prismatic dislocations and CANaPs/LPSO plates. (c) 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University

  • Název v anglickém jazyce

    In-situ study of the microstructure evolution during tension of a Mg-Y-Zn-Al alloy processed by rapidly solidified ribbon consolidation technique

  • Popis výsledku anglicky

    Mg-Y-Zn-Al alloys processed by rapidly solidified ribbon consolidation (RSRC) technique exhibit an exceptional mechanical performance indicating promising application potential. This material has a bimodal microstructure consisting of fine recrystallized and coarse nonrecrystallized grains with solute-rich stacking faults forming cluster arranged layers (CALs) and nanoplates (CANaPs), or complete long period stacking ordered (LPSO) phase. In order to reveal the deformation mechanisms, in-situ synchrotron X-ray diffraction line profile analysis was employed for a detailed study of the dislocation arrangement created during tension in Mg- 0.9% Zn- 2.05% Y- 0.15% Al (at%) alloy. For uncovering the effect of the initial microstructure on the mechanical performance, additional samples were obtained by annealing of the as-consolidated specimen at 300 and 400 degrees C for 2 h. The heat treatment at 300 degrees C had no significant effect on the initial microstructure, its evolution during tension and, thus, the overall deformation behavior under tensile loading. On the other hand, annealing at 400 degrees C resulted in a significant increase of the recrystallized grains fraction and a decrease of the dislocation density, leading to only minor degradation of the mechanical strength. The maximum dislocation density at the failure of the samples corresponding to the plastic strain of 10-25% was estimated to be about 16-20 x 1014 m-2. The diffraction profile analysis indicated that most dislocations formed during tension were of non-basal ( a ) and pyramidal ( c + a ) types, what was also in agreement with the Schmid factor values revealed independently from orientation maps. It was also shown that the dislocation-induced Taylor hardening was much lower below the plastic strain of 3% than above this value, which was explained by a model of the interaction between prismatic dislocations and CANaPs/LPSO plates. (c) 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) Peer review under responsibility of Chongqing University

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/8F21011" target="_blank" >8F21011: Development of Advanced Magnesium Alloys for Multifunctional Applicants in Extreme Environments</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Magnesium and Alloys

  • ISSN

    2213-9567

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    2024-2040

  • Kód UT WoS článku

    001273359700001

  • EID výsledku v databázi Scopus

    2-s2.0-85194480721