The Effect of Approximate Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10484926" target="_blank" >RIV/00216208:11320/24:10484926 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eXpY1v_o0P" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=eXpY1v_o0P</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/23M1578255" target="_blank" >10.1137/23M1578255</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Effect of Approximate Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods
Popis výsledku v původním jazyce
The multigrid V-cycle method is a popular method for solving systems of linear equations. It computes an approximate solution by using smoothing on fine levels and solving a system of linear equations on the coarsest level. Solving on the coarsest level depends on the size and difficulty of the problem. If the size permits, it is typical to use a direct method based on LU or Cholesky decomposition. In settings with large coarsest-level problems, approximate solvers such as iterative Krylov subspace methods, or direct methods based on low-rank approximation, are often used. The accuracy of the coarsest-level solver is typically determined based on the experience of the users with the concrete problems and methods. In this paper, we present an approach to analyzing the effects of approximate coarsest-level solves on the convergence of the V-cycle method for symmetric positive definite problems. Using these results, we derive coarsest-level stopping criterion through which we may control the difference between the approximation computed by a V-cycle method with approximate coarsest-level solver and the approximation which would be computed if the coarsest-level problems were solved exactly. The coarsest-level stopping criterion may thus be set up such that the V-cycle method converges to a chosen finest-level accuracy in (nearly) the same number of V-cycle iterations as the V-cycle method with exact coarsest-level solver. We also utilize the theoretical results to discuss how the convergence of the V-cycle method may be affected by the choice of a tolerance in a coarsest-level stopping criterion based on the relative residual norm.
Název v anglickém jazyce
The Effect of Approximate Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods
Popis výsledku anglicky
The multigrid V-cycle method is a popular method for solving systems of linear equations. It computes an approximate solution by using smoothing on fine levels and solving a system of linear equations on the coarsest level. Solving on the coarsest level depends on the size and difficulty of the problem. If the size permits, it is typical to use a direct method based on LU or Cholesky decomposition. In settings with large coarsest-level problems, approximate solvers such as iterative Krylov subspace methods, or direct methods based on low-rank approximation, are often used. The accuracy of the coarsest-level solver is typically determined based on the experience of the users with the concrete problems and methods. In this paper, we present an approach to analyzing the effects of approximate coarsest-level solves on the convergence of the V-cycle method for symmetric positive definite problems. Using these results, we derive coarsest-level stopping criterion through which we may control the difference between the approximation computed by a V-cycle method with approximate coarsest-level solver and the approximation which would be computed if the coarsest-level problems were solved exactly. The coarsest-level stopping criterion may thus be set up such that the V-cycle method converges to a chosen finest-level accuracy in (nearly) the same number of V-cycle iterations as the V-cycle method with exact coarsest-level solver. We also utilize the theoretical results to discuss how the convergence of the V-cycle method may be affected by the choice of a tolerance in a coarsest-level stopping criterion based on the relative residual norm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
1095-7197
Svazek periodika
46
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
"A2634"-"A2659"
Kód UT WoS článku
001311513200003
EID výsledku v databázi Scopus
2-s2.0-85201854181