Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Relation between diffusive terms and Riemann solver in WCSPH

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10485749" target="_blank" >RIV/00216208:11320/24:10485749 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21220/24:00375804

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gvjIy7e7sy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gvjIy7e7sy</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.camwa.2024.05.016" target="_blank" >10.1016/j.camwa.2024.05.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Relation between diffusive terms and Riemann solver in WCSPH

  • Popis výsledku v původním jazyce

    The widely used weakly compressible variant of Smoothed Particle Hydrodynamics (SPH) method suffers from density and hence pressure oscillations. This is due to the particle Lagrangian nature of the SPH method in combination with weakly compressible assumption, explicit time scheme and that the substitutions of the derivatives in the SPH method are central. There are two common strategies how to suppress these issues. One of them is to use numerical diffusive term which is added to the continuity equation in order to suppress the spurious oscillation of density field. The second option is to describe the particle -particle interaction in terms of Riemann problem and use Riemann solver, which provides numerical dissipation, to handle particle interactions. In our work, we deal with the relation between these two approaches. For the constant reconstruction and for the linear reconstruction we show that the usage of Riemann solvers is due to its intrinsic numerical viscosity equivalent to the usage of diffusive terms based on even derivatives, with the difference that the Riemann solvers lead to a significantly higher diffusivity value then the standard diffusive terms. We also discuss the usage of limiters for cases with the linear reconstruction of the solution. Moreover, for both, the constant and the linear reconstruction, we analyze additional terms resulting from the employed Riemann solver also for the momentum equation. Combining these results we obtain equivalent partial differential equations, which are the result of the usage of the Riemann solver.

  • Název v anglickém jazyce

    Relation between diffusive terms and Riemann solver in WCSPH

  • Popis výsledku anglicky

    The widely used weakly compressible variant of Smoothed Particle Hydrodynamics (SPH) method suffers from density and hence pressure oscillations. This is due to the particle Lagrangian nature of the SPH method in combination with weakly compressible assumption, explicit time scheme and that the substitutions of the derivatives in the SPH method are central. There are two common strategies how to suppress these issues. One of them is to use numerical diffusive term which is added to the continuity equation in order to suppress the spurious oscillation of density field. The second option is to describe the particle -particle interaction in terms of Riemann problem and use Riemann solver, which provides numerical dissipation, to handle particle interactions. In our work, we deal with the relation between these two approaches. For the constant reconstruction and for the linear reconstruction we show that the usage of Riemann solvers is due to its intrinsic numerical viscosity equivalent to the usage of diffusive terms based on even derivatives, with the difference that the Riemann solvers lead to a significantly higher diffusivity value then the standard diffusive terms. We also discuss the usage of limiters for cases with the linear reconstruction of the solution. Moreover, for both, the constant and the linear reconstruction, we analyze additional terms resulting from the employed Riemann solver also for the momentum equation. Combining these results we obtain equivalent partial differential equations, which are the result of the usage of the Riemann solver.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Mathematics with Applications

  • ISSN

    0898-1221

  • e-ISSN

    1873-7668

  • Svazek periodika

    167

  • Číslo periodika v rámci svazku

    167

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    239-248

  • Kód UT WoS článku

    001246767700002

  • EID výsledku v databázi Scopus

    2-s2.0-85194075668