Relation between diffusive terms and Riemann solver in WCSPH
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10485749" target="_blank" >RIV/00216208:11320/24:10485749 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/24:00375804
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gvjIy7e7sy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gvjIy7e7sy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.camwa.2024.05.016" target="_blank" >10.1016/j.camwa.2024.05.016</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Relation between diffusive terms and Riemann solver in WCSPH
Popis výsledku v původním jazyce
The widely used weakly compressible variant of Smoothed Particle Hydrodynamics (SPH) method suffers from density and hence pressure oscillations. This is due to the particle Lagrangian nature of the SPH method in combination with weakly compressible assumption, explicit time scheme and that the substitutions of the derivatives in the SPH method are central. There are two common strategies how to suppress these issues. One of them is to use numerical diffusive term which is added to the continuity equation in order to suppress the spurious oscillation of density field. The second option is to describe the particle -particle interaction in terms of Riemann problem and use Riemann solver, which provides numerical dissipation, to handle particle interactions. In our work, we deal with the relation between these two approaches. For the constant reconstruction and for the linear reconstruction we show that the usage of Riemann solvers is due to its intrinsic numerical viscosity equivalent to the usage of diffusive terms based on even derivatives, with the difference that the Riemann solvers lead to a significantly higher diffusivity value then the standard diffusive terms. We also discuss the usage of limiters for cases with the linear reconstruction of the solution. Moreover, for both, the constant and the linear reconstruction, we analyze additional terms resulting from the employed Riemann solver also for the momentum equation. Combining these results we obtain equivalent partial differential equations, which are the result of the usage of the Riemann solver.
Název v anglickém jazyce
Relation between diffusive terms and Riemann solver in WCSPH
Popis výsledku anglicky
The widely used weakly compressible variant of Smoothed Particle Hydrodynamics (SPH) method suffers from density and hence pressure oscillations. This is due to the particle Lagrangian nature of the SPH method in combination with weakly compressible assumption, explicit time scheme and that the substitutions of the derivatives in the SPH method are central. There are two common strategies how to suppress these issues. One of them is to use numerical diffusive term which is added to the continuity equation in order to suppress the spurious oscillation of density field. The second option is to describe the particle -particle interaction in terms of Riemann problem and use Riemann solver, which provides numerical dissipation, to handle particle interactions. In our work, we deal with the relation between these two approaches. For the constant reconstruction and for the linear reconstruction we show that the usage of Riemann solvers is due to its intrinsic numerical viscosity equivalent to the usage of diffusive terms based on even derivatives, with the difference that the Riemann solvers lead to a significantly higher diffusivity value then the standard diffusive terms. We also discuss the usage of limiters for cases with the linear reconstruction of the solution. Moreover, for both, the constant and the linear reconstruction, we analyze additional terms resulting from the employed Riemann solver also for the momentum equation. Combining these results we obtain equivalent partial differential equations, which are the result of the usage of the Riemann solver.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Mathematics with Applications
ISSN
0898-1221
e-ISSN
1873-7668
Svazek periodika
167
Číslo periodika v rámci svazku
167
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
239-248
Kód UT WoS článku
001246767700002
EID výsledku v databázi Scopus
2-s2.0-85194075668