Resolving Sets in Temporal Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488013" target="_blank" >RIV/00216208:11320/24:10488013 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-63021-7_22" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-63021-7_22" target="_blank" >10.1007/978-3-031-63021-7_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Resolving Sets in Temporal Graphs
Popis výsledku v původním jazyce
A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by its distances to the vertices of R. Introduced in the 1970's, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.
Název v anglickém jazyce
Resolving Sets in Temporal Graphs
Popis výsledku anglicky
A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by its distances to the vertices of R. Introduced in the 1970's, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
COMBINATORIAL ALGORITHMS, IWOCA 2024
ISBN
978-3-031-63020-0
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
14
Strana od-do
287-300
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Ischia
Datum konání akce
1. 7. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
001282050500022