Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Resolving Sets in Temporal Graphs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488013" target="_blank" >RIV/00216208:11320/24:10488013 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-031-63021-7_22" target="_blank" >https://doi.org/10.1007/978-3-031-63021-7_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-63021-7_22" target="_blank" >10.1007/978-3-031-63021-7_22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Resolving Sets in Temporal Graphs

  • Popis výsledku v původním jazyce

    A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by its distances to the vertices of R. Introduced in the 1970&apos;s, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.

  • Název v anglickém jazyce

    Resolving Sets in Temporal Graphs

  • Popis výsledku anglicky

    A resolving set R in a graph G is a set of vertices such that every vertex of G is uniquely identified by its distances to the vertices of R. Introduced in the 1970&apos;s, this concept has been since then extensively studied from both combinatorial and algorithmic point of view. We propose a generalization of the concept of resolving sets to temporal graphs, i.e., graphs with edge sets that change over discrete time-steps. In this setting, the temporal distance from u to v is the earliest possible time-step at which a journey with strictly increasing time-steps on edges leaving u reaches v, i.e., the first time-step at which v could receive a message broadcast from u. A temporal resolving set of a temporal graph G is a subset R of its vertices such that every vertex of G is uniquely identified by its temporal distances from vertices of R. We study the problem of finding a minimum-size temporal resolving set, and show that it is NP-complete even on very restricted graph classes and with strong constraints on the time-steps: temporal complete graphs where every edge appears in either time-step 1 or 2, temporal trees where every edge appears in at most two consecutive time-steps, and even temporal subdivided stars where every edge appears in at most two (not necessarily consecutive) time-steps. On the other hand, we give polynomial-time algorithms for temporal paths and temporal stars where every edge appears in exactly one time-step, and give a combinatorial analysis and algorithms for several temporal graph classes where the edges appear in periodic time-steps.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    COMBINATORIAL ALGORITHMS, IWOCA 2024

  • ISBN

    978-3-031-63020-0

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    14

  • Strana od-do

    287-300

  • Název nakladatele

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Místo vydání

    CHAM

  • Místo konání akce

    Ischia

  • Datum konání akce

    1. 7. 2024

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    001282050500022