Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sparse least-squares Universum twin bounded support vector machine with adaptive Lp-norms and feature selection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488658" target="_blank" >RIV/00216208:11320/24:10488658 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13440/24:43898374

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D_LdFwE3ym" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=D_LdFwE3ym</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2024.123378" target="_blank" >10.1016/j.eswa.2024.123378</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sparse least-squares Universum twin bounded support vector machine with adaptive Lp-norms and feature selection

  • Popis výsledku v původním jazyce

    In data analysis, when attempting to solve classification problems, we may encounter a large number of features. However, not all features are relevant for the current classification, and including irrelevant features can occasionally degrade learning performance. As a result, selecting the most relevant features is critical, especially for high-dimensional data sets in classification problems. Feature selection is an effective method for resolving this issue. It attempts to represent the original data by extracting relevant features containing useful information. In this research, our aim is to propose a p-norm least-squares Universum twin bounded support vector machine (LSp-UTBSVM) to perform classification and feature selection at the same time. Indeed, the proposed method, which outperforms the traditional least-squares Universum twin bounded support vector machine, can achieve good classification accuracy in a reasonable amount of time while also providing a sparse solution. The model we propose is an adaptive learning procedure with p-norm (0 &lt; p &lt; 1), where the parameter p can be automatically selected by the data set. The algorithm we use to find the approximate solution of this model involves solving systems of linear equations. Furthermore, we obtain new bounds for the absolute values of non-zero components of a local optimal solution. These bounds allow us to remove the zero components from an arbitrary numerical solution. Setting the parameter p, LSp-UTBSVM improves classification accuracy and selects the relevant features. Numerical experiments on a handwritten digit recognition, University of California Irvine (UCI) benchmark, Normally Distributed Clusters (NDC) and high dimensional data sets confirm the superiority of the proposed method in the accuracy of classification and the selection of relevant features in comparison with some popular methods.

  • Název v anglickém jazyce

    Sparse least-squares Universum twin bounded support vector machine with adaptive Lp-norms and feature selection

  • Popis výsledku anglicky

    In data analysis, when attempting to solve classification problems, we may encounter a large number of features. However, not all features are relevant for the current classification, and including irrelevant features can occasionally degrade learning performance. As a result, selecting the most relevant features is critical, especially for high-dimensional data sets in classification problems. Feature selection is an effective method for resolving this issue. It attempts to represent the original data by extracting relevant features containing useful information. In this research, our aim is to propose a p-norm least-squares Universum twin bounded support vector machine (LSp-UTBSVM) to perform classification and feature selection at the same time. Indeed, the proposed method, which outperforms the traditional least-squares Universum twin bounded support vector machine, can achieve good classification accuracy in a reasonable amount of time while also providing a sparse solution. The model we propose is an adaptive learning procedure with p-norm (0 &lt; p &lt; 1), where the parameter p can be automatically selected by the data set. The algorithm we use to find the approximate solution of this model involves solving systems of linear equations. Furthermore, we obtain new bounds for the absolute values of non-zero components of a local optimal solution. These bounds allow us to remove the zero components from an arbitrary numerical solution. Setting the parameter p, LSp-UTBSVM improves classification accuracy and selects the relevant features. Numerical experiments on a handwritten digit recognition, University of California Irvine (UCI) benchmark, Normally Distributed Clusters (NDC) and high dimensional data sets confirm the superiority of the proposed method in the accuracy of classification and the selection of relevant features in comparison with some popular methods.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    248

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    23

  • Strana od-do

    123378

  • Kód UT WoS článku

    001179240700001

  • EID výsledku v databázi Scopus

    2-s2.0-85183984633