Sparse least squares K-SVCR multi-class classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F44555601%3A13440%2F24%3A43898581" target="_blank" >RIV/44555601:13440/24:43898581 - isvavai.cz</a>
Výsledek na webu
<a href="https://jnva.biemdas.com/archives/2507" target="_blank" >https://jnva.biemdas.com/archives/2507</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23952/jnva.8.2024.6.07" target="_blank" >10.23952/jnva.8.2024.6.07</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse least squares K-SVCR multi-class classification
Popis výsledku v původním jazyce
This paper introduces a novel model, the sparse least squares K-class support vector classificationregression with adaptive p-norm (PLSTKSVC), to tackle challenges in multi-class classification. Leveraging a "1-versus-1-versus-rest" structure, PLSTKSVC dynamically adjusts the parameter p based on the data, enabling an adaptive learning framework. By incorporating cardinality-constrained optimization, the model seamlessly integrates feature selection and classification. Although the p-norm is non-convex for 0 < p<1, PLSTKSVC efficiently addresses the associated optimization via linear systems of equations. PLSTKSVC offers several advantages, including simultaneous feature selection and classification, robust theoretical foundations, algorithmic efficiency, and strong empirical validation. The model?s theoretical contributions include lower bounds on non-zero solution entries and upper bounds on the optimal solution norm. Experimental results on multi-class classification datasets highlight the superior performance of PLSTKSVC, establishing it as a significant advancement in machine learning.
Název v anglickém jazyce
Sparse least squares K-SVCR multi-class classification
Popis výsledku anglicky
This paper introduces a novel model, the sparse least squares K-class support vector classificationregression with adaptive p-norm (PLSTKSVC), to tackle challenges in multi-class classification. Leveraging a "1-versus-1-versus-rest" structure, PLSTKSVC dynamically adjusts the parameter p based on the data, enabling an adaptive learning framework. By incorporating cardinality-constrained optimization, the model seamlessly integrates feature selection and classification. Although the p-norm is non-convex for 0 < p<1, PLSTKSVC efficiently addresses the associated optimization via linear systems of equations. PLSTKSVC offers several advantages, including simultaneous feature selection and classification, robust theoretical foundations, algorithmic efficiency, and strong empirical validation. The model?s theoretical contributions include lower bounds on non-zero solution entries and upper bounds on the optimal solution norm. Experimental results on multi-class classification datasets highlight the superior performance of PLSTKSVC, establishing it as a significant advancement in machine learning.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Nonlinear and Variational Analysis
ISSN
2560-6921
e-ISSN
2560-6778
Svazek periodika
8
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
19
Strana od-do
953-971
Kód UT WoS článku
001374806800007
EID výsledku v databázi Scopus
2-s2.0-85208017159