Strong solvability of restricted interval systems and its applications in quadratic and geometric programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488661" target="_blank" >RIV/00216208:11320/24:10488661 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4D7_FtGakZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4D7_FtGakZ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2022.12.024" target="_blank" >10.1016/j.laa.2022.12.024</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strong solvability of restricted interval systems and its applications in quadratic and geometric programming
Popis výsledku v původním jazyce
We consider interval systems of linear equations and inequalities with a restriction to some a priori given set. We focus on a characterization of strong solvability, that is, solvability for each realization of interval values, and we compare this with an existence of a strong solution defined analogously. The motivation comes from the area of interval -valued optimization problems, where strong solvability means guaranteed feasibility of any realization of the problem. Strong solvability with strict inequalities implies the robust Slater condition, which ensures that standard optimality conditions can be used. We apply the issues particularly in two optimization classes, convex quadratic programming with quadratic constraints and posynomial geometric programming. For the former, we also utilize the presented result to improve a characterization of the worst case optimal value. Eventually, we state several open problems that emerged while deriving the results. (c) 2023 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Strong solvability of restricted interval systems and its applications in quadratic and geometric programming
Popis výsledku anglicky
We consider interval systems of linear equations and inequalities with a restriction to some a priori given set. We focus on a characterization of strong solvability, that is, solvability for each realization of interval values, and we compare this with an existence of a strong solution defined analogously. The motivation comes from the area of interval -valued optimization problems, where strong solvability means guaranteed feasibility of any realization of the problem. Strong solvability with strict inequalities implies the robust Slater condition, which ensures that standard optimality conditions can be used. We apply the issues particularly in two optimization classes, convex quadratic programming with quadratic constraints and posynomial geometric programming. For the former, we also utilize the presented result to improve a characterization of the worst case optimal value. Eventually, we state several open problems that emerged while deriving the results. (c) 2023 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Svazek periodika
693
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
4-21
Kód UT WoS článku
001239610100001
EID výsledku v databázi Scopus
2-s2.0-85146466697