Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Strong solvability of restricted interval systems and its applications in quadratic and geometric programming

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488661" target="_blank" >RIV/00216208:11320/24:10488661 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4D7_FtGakZ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4D7_FtGakZ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.laa.2022.12.024" target="_blank" >10.1016/j.laa.2022.12.024</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Strong solvability of restricted interval systems and its applications in quadratic and geometric programming

  • Popis výsledku v původním jazyce

    We consider interval systems of linear equations and inequalities with a restriction to some a priori given set. We focus on a characterization of strong solvability, that is, solvability for each realization of interval values, and we compare this with an existence of a strong solution defined analogously. The motivation comes from the area of interval -valued optimization problems, where strong solvability means guaranteed feasibility of any realization of the problem. Strong solvability with strict inequalities implies the robust Slater condition, which ensures that standard optimality conditions can be used. We apply the issues particularly in two optimization classes, convex quadratic programming with quadratic constraints and posynomial geometric programming. For the former, we also utilize the presented result to improve a characterization of the worst case optimal value. Eventually, we state several open problems that emerged while deriving the results. (c) 2023 Elsevier Inc. All rights reserved.

  • Název v anglickém jazyce

    Strong solvability of restricted interval systems and its applications in quadratic and geometric programming

  • Popis výsledku anglicky

    We consider interval systems of linear equations and inequalities with a restriction to some a priori given set. We focus on a characterization of strong solvability, that is, solvability for each realization of interval values, and we compare this with an existence of a strong solution defined analogously. The motivation comes from the area of interval -valued optimization problems, where strong solvability means guaranteed feasibility of any realization of the problem. Strong solvability with strict inequalities implies the robust Slater condition, which ensures that standard optimality conditions can be used. We apply the issues particularly in two optimization classes, convex quadratic programming with quadratic constraints and posynomial geometric programming. For the former, we also utilize the presented result to improve a characterization of the worst case optimal value. Eventually, we state several open problems that emerged while deriving the results. (c) 2023 Elsevier Inc. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50201 - Economic Theory

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Linear Algebra and Its Applications

  • ISSN

    0024-3795

  • e-ISSN

    1873-1856

  • Svazek periodika

    693

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    18

  • Strana od-do

    4-21

  • Kód UT WoS článku

    001239610100001

  • EID výsledku v databázi Scopus

    2-s2.0-85146466697