Enhancing Domain Modeling with Pre-trained Large Language Models: An Automated Assistant for Domain Modelers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10488754" target="_blank" >RIV/00216208:11320/24:10488754 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-75872-0_13" target="_blank" >https://doi.org/10.1007/978-3-031-75872-0_13</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-75872-0_13" target="_blank" >10.1007/978-3-031-75872-0_13</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Domain Modeling with Pre-trained Large Language Models: An Automated Assistant for Domain Modelers
Popis výsledku v původním jazyce
Domain modeling involves creating abstract representations of information within a specific domain using techniques such as conceptual modeling and ontology engineering. Traditionally, manual creation and maintenance of domain models are labor intensive and require modeling expertise. This paper explores the automation of domain modeling using pre-trained large language models (LLMs), presenting an experimental LLM-based conceptual modeling assistant that collaborates with a human expert. The assistant provides modeling suggestions based on a given textual description of the domain of interest, aiding in the design of classes, attributes, and associations. We present a generic framework for domain modeling assistants that consists of class, attribute, and association generators, and show how they can be implemented using an LLM. We demonstrate a concrete configuration of this framework and its prototype implementation. We evaluated the effectiveness of the framework configuration across various domains. Our findings indicate that the assistant significantly enhances the efficiency of modeling while maintaining reasonable quality of the outputs.
Název v anglickém jazyce
Enhancing Domain Modeling with Pre-trained Large Language Models: An Automated Assistant for Domain Modelers
Popis výsledku anglicky
Domain modeling involves creating abstract representations of information within a specific domain using techniques such as conceptual modeling and ontology engineering. Traditionally, manual creation and maintenance of domain models are labor intensive and require modeling expertise. This paper explores the automation of domain modeling using pre-trained large language models (LLMs), presenting an experimental LLM-based conceptual modeling assistant that collaborates with a human expert. The assistant provides modeling suggestions based on a given textual description of the domain of interest, aiding in the design of classes, attributes, and associations. We present a generic framework for domain modeling assistants that consists of class, attribute, and association generators, and show how they can be implemented using an LLM. We demonstrate a concrete configuration of this framework and its prototype implementation. We evaluated the effectiveness of the framework configuration across various domains. Our findings indicate that the assistant significantly enhances the efficiency of modeling while maintaining reasonable quality of the outputs.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-031-75872-0
ISSN
—
e-ISSN
1611-3349
Počet stran výsledku
19
Strana od-do
235-253
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
PITTSBURGH, PENNSYLVANIA, USA
Datum konání akce
28. 10. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—