Simulation limitations of affine cellular automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489811" target="_blank" >RIV/00216208:11320/24:10489811 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/24:00375917 RIV/68407700:21730/24:00375917
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bxzW_Z-t8h" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=bxzW_Z-t8h</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2024.114606" target="_blank" >10.1016/j.tcs.2024.114606</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation limitations of affine cellular automata
Popis výsledku v původním jazyce
Cellular automata are a famous model of computation, yet it is still a challenging task to assess the computational capacity of a given automaton; especially when it comes to showing negative results. In this paper, we focus on studying this problem via the notion of CA intrinsic simulation. We say that automaton A is simulated by B if each space-time diagram of A can be, after suitable transformations, reproduced by B. We study affine automata - i.e., automata whose local rules are affine mappings of vector spaces. This broad class contains the well-studied cases of linear automata. The main result of this paper shows that (almost) every automaton affine over a finite field F-p can only simulate affine automata over F-p. We discuss how this general result implies, and widely surpasses, limitations of linear and additive automata previously proved in the literature. We provide a formalization of the simulation notions into algebraic language and discuss how this opens a new path to showing negative results about the computational power of cellular automata using deeper algebraic theorems.
Název v anglickém jazyce
Simulation limitations of affine cellular automata
Popis výsledku anglicky
Cellular automata are a famous model of computation, yet it is still a challenging task to assess the computational capacity of a given automaton; especially when it comes to showing negative results. In this paper, we focus on studying this problem via the notion of CA intrinsic simulation. We say that automaton A is simulated by B if each space-time diagram of A can be, after suitable transformations, reproduced by B. We study affine automata - i.e., automata whose local rules are affine mappings of vector spaces. This broad class contains the well-studied cases of linear automata. The main result of this paper shows that (almost) every automaton affine over a finite field F-p can only simulate affine automata over F-p. We discuss how this general result implies, and widely surpasses, limitations of linear and additive automata previously proved in the literature. We provide a formalization of the simulation notions into algebraic language and discuss how this opens a new path to showing negative results about the computational power of cellular automata using deeper algebraic theorems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
1003
Číslo periodika v rámci svazku
July 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
114606
Kód UT WoS článku
001238064200001
EID výsledku v databázi Scopus
2-s2.0-85192063794