Detection of Changes in Panel Data Models with Stationary Regressors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10489873" target="_blank" >RIV/00216208:11320/24:10489873 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-61853-6_16" target="_blank" >https://doi.org/10.1007/978-3-031-61853-6_16</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-61853-6_16" target="_blank" >10.1007/978-3-031-61853-6_16</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detection of Changes in Panel Data Models with Stationary Regressors
Popis výsledku v původním jazyce
We consider a panel regression model with cross-sectional dimension N. The aim is to test, based on T observations, whether the intercept in the model remains unchanged throughout the observation period. The test procedure involves the use of a CUSUM-type statistic derived from a quasi-likelihood argument. We derive the limit null distribution of the test under strong mixing and stationarity conditions on the errors and regressors, and show that the results remain valid in the presence of weak and dominating cross-sectional dependence. We also propose a self-normalized version of the test which is convenient from a practical perspective in that the estimation of long-run variances is avoided entirely. The theoretical results are supported by a simulation study that indicates that the tests work well in the case of small to moderate sample sizes. An illustrative application of the procedure to US mutual fund data demonstrates the relevance of the proposed procedure in financial settings.
Název v anglickém jazyce
Detection of Changes in Panel Data Models with Stationary Regressors
Popis výsledku anglicky
We consider a panel regression model with cross-sectional dimension N. The aim is to test, based on T observations, whether the intercept in the model remains unchanged throughout the observation period. The test procedure involves the use of a CUSUM-type statistic derived from a quasi-likelihood argument. We derive the limit null distribution of the test under strong mixing and stationarity conditions on the errors and regressors, and show that the results remain valid in the presence of weak and dominating cross-sectional dependence. We also propose a self-normalized version of the test which is convenient from a practical perspective in that the estimation of long-run variances is avoided entirely. The theoretical results are supported by a simulation study that indicates that the tests work well in the case of small to moderate sample sizes. An illustrative application of the procedure to US mutual fund data demonstrates the relevance of the proposed procedure in financial settings.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Recent Advances in Econometrics and Statistics
ISBN
978-3-031-61852-9
Počet stran výsledku
20
Strana od-do
305-324
Počet stran knihy
618
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—