Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490010" target="_blank" >RIV/00216208:11320/24:10490010 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LSgHueOjmR" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LSgHueOjmR</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0207090" target="_blank" >10.1063/5.0207090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene
Popis výsledku v původním jazyce
The random-phase approximation (RPA) includes a subset of higher than second-order correlation-energy contributions, but stays in the same complexity class as the second-order Moller-Plesset perturbation theory (MP2) in both Gaussian-orbital and plane-wave codes. This makes RPA a promising ab initio electronic structure approach for the binding energies of molecular crystals. Still, some issues stand out in practical applications of RPA. Notably, compact clusters of nonpolar molecules are poorly described, and the interaction energies strongly depend on the reference single-determinant state. Using the many-body expansion of the binding energy of a crystal, we investigate those issues and the effect of beyond-RPA corrections. We find the beneficial effect of quartic-scaling exchange and non-ring coupled-cluster doubles corrections. The nonadditive interactions in compact trimers of molecules are improved by using the self-consistent Hartree-Fock orbitals instead of the usual Kohn-Sham states, but this kind of orbital input also leads to underestimated dimer energies. Overall, a substantial improvement over the RPA with a renormalized singles approach is possible at a modest quartic-scaling cost, which encourages further research into additional RPA corrections. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).
Název v anglickém jazyce
Contributions beyond direct random-phase approximation in the binding energy of solid ethane, ethylene, and acetylene
Popis výsledku anglicky
The random-phase approximation (RPA) includes a subset of higher than second-order correlation-energy contributions, but stays in the same complexity class as the second-order Moller-Plesset perturbation theory (MP2) in both Gaussian-orbital and plane-wave codes. This makes RPA a promising ab initio electronic structure approach for the binding energies of molecular crystals. Still, some issues stand out in practical applications of RPA. Notably, compact clusters of nonpolar molecules are poorly described, and the interaction energies strongly depend on the reference single-determinant state. Using the many-body expansion of the binding energy of a crystal, we investigate those issues and the effect of beyond-RPA corrections. We find the beneficial effect of quartic-scaling exchange and non-ring coupled-cluster doubles corrections. The nonadditive interactions in compact trimers of molecules are improved by using the self-consistent Hartree-Fock orbitals instead of the usual Kohn-Sham states, but this kind of orbital input also leads to underestimated dimer energies. Overall, a substantial improvement over the RPA with a renormalized singles approach is possible at a modest quartic-scaling cost, which encourages further research into additional RPA corrections. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(https://creativecommons.org/licenses/by/4.0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
1089-7690
Svazek periodika
160
Číslo periodika v rámci svazku
22
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
224101
Kód UT WoS článku
001244483600006
EID výsledku v databázi Scopus
2-s2.0-85195627537