Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490638" target="_blank" >RIV/00216208:11320/24:10490638 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Jb-26~xlP_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Jb-26~xlP_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3651155" target="_blank" >10.1145/3651155</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic
Popis výsledku v původním jazyce
The emergence of low precision floating-point arithmetic in computer hardware has led to a resurgence of interest in the use of mixed precision numerical linear algebra. For linear systems of equations, there has been renewed enthusiasm for mixed precision variants of iterative refinement. We consider the iterative solution of large sparse systems using incomplete factorization preconditioners. The focus is on the robust computation of such preconditioners in half precision arithmetic and employing them to solve symmetric positive definite systems to higher precision accuracy; however, the proposed ideas can be applied more generally. Even for well-conditioned problems, incomplete factorizations can break down when small entries occur on the diagonal during the factorization. When using half precision arithmetic, overflows are an additional possible source of breakdown. We examine how breakdowns can be avoided and implement our strategies within new half precision Fortran sparse incomplete Cholesky factorization software. Results are reported for a range of problems from practical applications. These demonstrate that, even for highly ill-conditioned problems, half precision preconditioners can potentially replace double precision preconditioners, although unsurprisingly this may be at the cost of additional iterations of a Krylov solver.
Název v anglickém jazyce
Avoiding Breakdown in Incomplete Factorizations in Low Precision Arithmetic
Popis výsledku anglicky
The emergence of low precision floating-point arithmetic in computer hardware has led to a resurgence of interest in the use of mixed precision numerical linear algebra. For linear systems of equations, there has been renewed enthusiasm for mixed precision variants of iterative refinement. We consider the iterative solution of large sparse systems using incomplete factorization preconditioners. The focus is on the robust computation of such preconditioners in half precision arithmetic and employing them to solve symmetric positive definite systems to higher precision accuracy; however, the proposed ideas can be applied more generally. Even for well-conditioned problems, incomplete factorizations can break down when small entries occur on the diagonal during the factorization. When using half precision arithmetic, overflows are an additional possible source of breakdown. We examine how breakdowns can be avoided and implement our strategies within new half precision Fortran sparse incomplete Cholesky factorization software. Results are reported for a range of problems from practical applications. These demonstrate that, even for highly ill-conditioned problems, half precision preconditioners can potentially replace double precision preconditioners, although unsurprisingly this may be at the cost of additional iterations of a Krylov solver.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACM Transactions on Mathematical Software
ISSN
0098-3500
e-ISSN
1557-7295
Svazek periodika
50
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
9
Kód UT WoS článku
001266982400001
EID výsledku v databázi Scopus
2-s2.0-85194009969