MIXED PRECISION ITERATIVE REFINEMENT WITH SPARSE APPROXIMATE INVERSE PRECONDITIONING
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475691" target="_blank" >RIV/00216208:11320/23:10475691 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.t88-EHo7z" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.t88-EHo7z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1487709" target="_blank" >10.1137/22M1487709</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MIXED PRECISION ITERATIVE REFINEMENT WITH SPARSE APPROXIMATE INVERSE PRECONDITIONING
Popis výsledku v původním jazyce
With the commercial availability of mixed precision hardware, mixed precision GMRES-based iterative refinement schemes have emerged as popular approaches for solving sparse linear systems. Existing analyses of these approaches, however, are based on using full LU factorizations to construct preconditioners for use within GMRES in each refinement step. In practical applications, inexact preconditioning techniques, such as incomplete LU or sparse approximate inverses, are often used for performance reasons. In this work, we investigate the use of sparse approximate inverse preconditioners based on Frobenius norm minimization within GMRES-based iterative refinement. We analyze the computation of sparse approximate inverses in finite precision and derive constraints under which user-specified stopping criteria will be satisfied. We then analyze the behavior of and convergence constraints for a five-precision GMRES-based iterative refinement scheme that uses sparse approximate inverse preconditioning, which we call SPAI-GMRES-IR. Our numerical experiments confirm the theoretical analysis and illustrate the resulting tradeoffs between preconditioner sparsity and GMRES-IR convergence rate.
Název v anglickém jazyce
MIXED PRECISION ITERATIVE REFINEMENT WITH SPARSE APPROXIMATE INVERSE PRECONDITIONING
Popis výsledku anglicky
With the commercial availability of mixed precision hardware, mixed precision GMRES-based iterative refinement schemes have emerged as popular approaches for solving sparse linear systems. Existing analyses of these approaches, however, are based on using full LU factorizations to construct preconditioners for use within GMRES in each refinement step. In practical applications, inexact preconditioning techniques, such as incomplete LU or sparse approximate inverses, are often used for performance reasons. In this work, we investigate the use of sparse approximate inverse preconditioners based on Frobenius norm minimization within GMRES-based iterative refinement. We analyze the computation of sparse approximate inverses in finite precision and derive constraints under which user-specified stopping criteria will be satisfied. We then analyze the behavior of and convergence constraints for a five-precision GMRES-based iterative refinement scheme that uses sparse approximate inverse preconditioning, which we call SPAI-GMRES-IR. Our numerical experiments confirm the theoretical analysis and illustrate the resulting tradeoffs between preconditioner sparsity and GMRES-IR convergence rate.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
1095-7197
Svazek periodika
45
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
"C131"-"C153"
Kód UT WoS článku
001071048600020
EID výsledku v databázi Scopus
2-s2.0-85163176309