THREE-PRECISION GMRES-BASED ITERATIVE REFINEMENT FOR LEAST SQUARES PROBLEMS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F20%3A10420371" target="_blank" >RIV/00216208:11320/20:10420371 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=epgdYWDpjD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=epgdYWDpjD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1316822" target="_blank" >10.1137/20M1316822</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
THREE-PRECISION GMRES-BASED ITERATIVE REFINEMENT FOR LEAST SQUARES PROBLEMS
Popis výsledku v původním jazyce
The standard iterative refinement procedure for improving an approximate solution to the least squares problem min(x) parallel to b - Ax parallel to(2), where A is an element of R-mxn with m >= n has full rank, is based on solving the (m n) x (m n) augmented system with the aid of a QR factorization. In order to exploit multiprecision arithmetic, iterative refinement can be formulated to use three precisions, but the resulting algorithm converges only for a limited range of problems. We build an iterative refinement algorithm called GMRES-LSIR, analogous to the GMRES-IR algorithm developed for linear systems [E. Carson and N. J. Higham, SIAM T. Set. Comput., 40 (2018), pp. A817-A8471, that solves the augmented system using GMRES preconditioned by a matrix based on the computed QR factors. We explore two left preconditioners; the first has full off-diagonal blocks, and the second is block diagonal and can be applied in either left-sided or split form. We prove that for a wide range of problems the first preconditioner yields backward and forward errors for the augmented system of order the working precision under suitable assumptions on the precisions and the problem conditioning. Our proof does not extend to the block diagonal preconditioner, but our numerical experiments show that with this preconditioner the algorithm performs about as well in practice. The experiments also show that if we use MINRES in place of GMRES then the convergence is similar for sufficiently well conditioned problems but worse for the most ill conditioned ones.
Název v anglickém jazyce
THREE-PRECISION GMRES-BASED ITERATIVE REFINEMENT FOR LEAST SQUARES PROBLEMS
Popis výsledku anglicky
The standard iterative refinement procedure for improving an approximate solution to the least squares problem min(x) parallel to b - Ax parallel to(2), where A is an element of R-mxn with m >= n has full rank, is based on solving the (m n) x (m n) augmented system with the aid of a QR factorization. In order to exploit multiprecision arithmetic, iterative refinement can be formulated to use three precisions, but the resulting algorithm converges only for a limited range of problems. We build an iterative refinement algorithm called GMRES-LSIR, analogous to the GMRES-IR algorithm developed for linear systems [E. Carson and N. J. Higham, SIAM T. Set. Comput., 40 (2018), pp. A817-A8471, that solves the augmented system using GMRES preconditioned by a matrix based on the computed QR factors. We explore two left preconditioners; the first has full off-diagonal blocks, and the second is block diagonal and can be applied in either left-sided or split form. We prove that for a wide range of problems the first preconditioner yields backward and forward errors for the augmented system of order the working precision under suitable assumptions on the precisions and the problem conditioning. Our proof does not extend to the block diagonal preconditioner, but our numerical experiments show that with this preconditioner the algorithm performs about as well in practice. The experiments also show that if we use MINRES in place of GMRES then the convergence is similar for sufficiently well conditioned problems but worse for the most ill conditioned ones.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
—
Svazek periodika
42
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
"A4063"-"A4083"
Kód UT WoS článku
000600650400024
EID výsledku v databázi Scopus
2-s2.0-85099012171