Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multistage mixed precision iterative refinement

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10446026" target="_blank" >RIV/00216208:11320/22:10446026 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DFqPLcERLC" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DFqPLcERLC</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/nla.2434" target="_blank" >10.1002/nla.2434</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multistage mixed precision iterative refinement

  • Popis výsledku v původním jazyce

    Low precision arithmetic, in particular half precision (16-bit) floating point arithmetic, is now available in commercial hardware. Using lower precision can offer significant savings in computation and communication costs with proportional savings in energy. Motivated by this, there has been a renewed interest in mixed precision iterative refinement schemes for solving linear systems Ax = b, and new variants of GMRES-based iterative refinement have been developed. Each particular variant with a given combination of precisions leads to different condition number-based constraints for convergence of the backward and forward errors, and each has different performance costs. The constraints for convergence given in the literature are, as an artifact of the analyses, often overly strict in practice, and thus could lead a user to select a more expensive variant when a less expensive one would have sufficed. In this work, we develop a multistage mixed precision iterative refinement solver which aims to combine existing mixed precision approaches to balance performance and accuracy and improve usability. For a user-specified initial combination of precisions, the algorithm begins with the least expensive approach and convergence is monitored via inexpensive computations with quantities produced during the iteration. If slow convergence or divergence is detected using particular stopping criteria, the algorithm switches to use a more expensive, but more reliable variant. A novel aspect of our approach is that, unlike existing implementations, our algorithm first attempts to use &quot;stronger&quot; GMRES-based solvers for the solution update before resorting to increasing the precision(s). In some scenarios, this can avoid the need to refactorize the matrix in higher precision. We perform extensive numerical experiments on a variety of random dense problems and problems from real applications which confirm the benefits of the multistage approach.

  • Název v anglickém jazyce

    Multistage mixed precision iterative refinement

  • Popis výsledku anglicky

    Low precision arithmetic, in particular half precision (16-bit) floating point arithmetic, is now available in commercial hardware. Using lower precision can offer significant savings in computation and communication costs with proportional savings in energy. Motivated by this, there has been a renewed interest in mixed precision iterative refinement schemes for solving linear systems Ax = b, and new variants of GMRES-based iterative refinement have been developed. Each particular variant with a given combination of precisions leads to different condition number-based constraints for convergence of the backward and forward errors, and each has different performance costs. The constraints for convergence given in the literature are, as an artifact of the analyses, often overly strict in practice, and thus could lead a user to select a more expensive variant when a less expensive one would have sufficed. In this work, we develop a multistage mixed precision iterative refinement solver which aims to combine existing mixed precision approaches to balance performance and accuracy and improve usability. For a user-specified initial combination of precisions, the algorithm begins with the least expensive approach and convergence is monitored via inexpensive computations with quantities produced during the iteration. If slow convergence or divergence is detected using particular stopping criteria, the algorithm switches to use a more expensive, but more reliable variant. A novel aspect of our approach is that, unlike existing implementations, our algorithm first attempts to use &quot;stronger&quot; GMRES-based solvers for the solution update before resorting to increasing the precision(s). In some scenarios, this can avoid the need to refactorize the matrix in higher precision. We perform extensive numerical experiments on a variety of random dense problems and problems from real applications which confirm the benefits of the multistage approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Numerical Linear Algebra with Applications

  • ISSN

    1070-5325

  • e-ISSN

  • Svazek periodika

    2022

  • Číslo periodika v rámci svazku

    29(4)

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    000759325400001

  • EID výsledku v databázi Scopus

    2-s2.0-85125105383