Mixed precision Rayleigh quotient iteration for total least squares problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10469268" target="_blank" >RIV/00216208:11320/23:10469268 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_0zjReMaz0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=_0zjReMaz0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11075-023-01665-z" target="_blank" >10.1007/s11075-023-01665-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mixed precision Rayleigh quotient iteration for total least squares problems
Popis výsledku v původním jazyce
With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of total least squares problems, i.e., solving {$min_{E,r} | [E, r]|_F$} subject to $(A+E)x=b+${$r$}, arises in numerous applications. Solving this problem requires finding the smallest singular value and corresponding right singular vector of $[A,b]$, which is challenging when $A$ is large and sparse. An efficient algorithm for this case due to Bj"{o}rck et al. [SIAM J. Matrix Anal. Appl. 22(2), 2000], called RQI-PCGTLS, is based on Rayleigh quotient iteration coupled with the preconditioned conjugate gradient method.We develop a mixed precision variant of this algorithm, RQI-PCGTLS-MP, in which up to three different precisions can be used. We assume that the lowest precision is used in the computation of the preconditioner, and give theoretical constraints on how this precision must be chosen to ensure stability. In contrast to standard least squares, for total least squares, the resulting constraint depends not only on the matrix $A$, but also on the right-hand side $b$. We perform a number of numerical experiments on model total least squares problems used in the literature, which demonstrate that our algorithm can attain the same accuracy as RQI-PCGTLS albeit with a potential convergence delay due to the use of low precision. Performance modeling shows that the mixed precision approach can achieve up to a $4times$ speedup depending on the size of the matrix and the number of Rayleigh quotient iterations performed.
Název v anglickém jazyce
Mixed precision Rayleigh quotient iteration for total least squares problems
Popis výsledku anglicky
With the recent emergence of mixed precision hardware, there has been a renewed interest in its use for solving numerical linear algebra problems fast and accurately. The solution of total least squares problems, i.e., solving {$min_{E,r} | [E, r]|_F$} subject to $(A+E)x=b+${$r$}, arises in numerous applications. Solving this problem requires finding the smallest singular value and corresponding right singular vector of $[A,b]$, which is challenging when $A$ is large and sparse. An efficient algorithm for this case due to Bj"{o}rck et al. [SIAM J. Matrix Anal. Appl. 22(2), 2000], called RQI-PCGTLS, is based on Rayleigh quotient iteration coupled with the preconditioned conjugate gradient method.We develop a mixed precision variant of this algorithm, RQI-PCGTLS-MP, in which up to three different precisions can be used. We assume that the lowest precision is used in the computation of the preconditioner, and give theoretical constraints on how this precision must be chosen to ensure stability. In contrast to standard least squares, for total least squares, the resulting constraint depends not only on the matrix $A$, but also on the right-hand side $b$. We perform a number of numerical experiments on model total least squares problems used in the literature, which demonstrate that our algorithm can attain the same accuracy as RQI-PCGTLS albeit with a potential convergence delay due to the use of low precision. Performance modeling shows that the mixed precision approach can achieve up to a $4times$ speedup depending on the size of the matrix and the number of Rayleigh quotient iterations performed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Algorithms
ISSN
1017-1398
e-ISSN
1572-9265
Svazek periodika
2023
Číslo periodika v rámci svazku
05/10/2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
001079117400001
EID výsledku v databázi Scopus
2-s2.0-85173767553