Solving large linear least squares problems with linear equality constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455908" target="_blank" >RIV/00216208:11320/22:10455908 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xd3yR9sEn7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xd3yR9sEn7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10543-022-00930-2" target="_blank" >10.1007/s10543-022-00930-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving large linear least squares problems with linear equality constraints
Popis výsledku v původním jazyce
We consider the problem of solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly.While some classical approaches are theoretically well founded, they can face difficultieswhen thematrix ofconstraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. We propose modifications with an emphasis on requiring that the constraints be satisfiedwith a small residual.We examine combining the null-space method with our recently developed algorithm for computing a null-space basis matrix for a "wide" matrix.We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive for solving a sequence of related problems. Numerical experiments on problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.
Název v anglickém jazyce
Solving large linear least squares problems with linear equality constraints
Popis výsledku anglicky
We consider the problem of solving large-scale linear least squares problems that have one or more linear constraints that must be satisfied exactly.While some classical approaches are theoretically well founded, they can face difficultieswhen thematrix ofconstraints contains dense rows or if an algorithmic transformation used in the solution process results in a modified problem that is much denser than the original one. We propose modifications with an emphasis on requiring that the constraints be satisfiedwith a small residual.We examine combining the null-space method with our recently developed algorithm for computing a null-space basis matrix for a "wide" matrix.We further show that a direct elimination approach enhanced by careful pivoting can be effective in transforming the problem to an unconstrained sparse-dense least squares problem that can be solved with existing direct or iterative methods. We also present a number of solution variants that employ an augmented system formulation, which can be attractive for solving a sequence of related problems. Numerical experiments on problems coming from practical applications are used throughout to demonstrate the effectiveness of the different approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
BIT Numerical Mathematics
ISSN
0006-3835
e-ISSN
1572-9125
Svazek periodika
62
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
1765-1787
Kód UT WoS článku
000821978300002
EID výsledku v databázi Scopus
2-s2.0-85133412705