EFFICIENT SOLUTION OF PARAMETER IDENTIFICATION PROBLEMS WITH H1 REGULARIZATION
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490704" target="_blank" >RIV/00216208:11320/24:10490704 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZKoOmR9bxx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZKoOmR9bxx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/22M1520591" target="_blank" >10.1137/22M1520591</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EFFICIENT SOLUTION OF PARAMETER IDENTIFICATION PROBLEMS WITH H1 REGULARIZATION
Popis výsledku v původním jazyce
We consider the identification of spatially distributed parameters under H 1 regularization. Solving the associated minimization problem by Gauss--Newton iteration results in linearized problems to be solved in each step that can be cast as boundary value problems involving a low-rank modification of the Laplacian. Using an algebraic multigrid as a fast Laplace solver, the Sherman-Morrison--Woodbury formula can be employed to construct a preconditioner for these linear problems which exhibits excellent scaling w.r.t. the relevant problem parameters. We first develop this approach in the functional setting, thus obtaining a consistent methodology for selecting boundary conditions that arise from the H 1 regularization. We then construct a method for solving the discrete linear systems based on combining any fast Poisson solver with the Woodbury formula. The efficacy of this method is then demonstrated with scaling experiments. These are carried out for a common nonlinear parameter identification problem arising in electrical resistivity tomography.
Název v anglickém jazyce
EFFICIENT SOLUTION OF PARAMETER IDENTIFICATION PROBLEMS WITH H1 REGULARIZATION
Popis výsledku anglicky
We consider the identification of spatially distributed parameters under H 1 regularization. Solving the associated minimization problem by Gauss--Newton iteration results in linearized problems to be solved in each step that can be cast as boundary value problems involving a low-rank modification of the Laplacian. Using an algebraic multigrid as a fast Laplace solver, the Sherman-Morrison--Woodbury formula can be employed to construct a preconditioner for these linear problems which exhibits excellent scaling w.r.t. the relevant problem parameters. We first develop this approach in the functional setting, thus obtaining a consistent methodology for selecting boundary conditions that arise from the H 1 regularization. We then construct a method for solving the discrete linear systems based on combining any fast Poisson solver with the Woodbury formula. The efficacy of this method is then demonstrated with scaling experiments. These are carried out for a common nonlinear parameter identification problem arising in electrical resistivity tomography.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal of Scientific Computing
ISSN
1064-8275
e-ISSN
1095-7197
Svazek periodika
46
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
"A1160"-"A1185"
Kód UT WoS článku
001291134400005
EID výsledku v databázi Scopus
2-s2.0-85191579856