The Density Formula : One Lemma to Bound Them All
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10490809" target="_blank" >RIV/00216208:11320/24:10490809 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.GD.2024.7" target="_blank" >https://doi.org/10.4230/LIPIcs.GD.2024.7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.GD.2024.7" target="_blank" >10.4230/LIPIcs.GD.2024.7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Density Formula : One Lemma to Bound Them All
Popis výsledku v původním jazyce
We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1,2, fan-crossing/fan-planar graphs, k-bend RAC-graphs with k = 0,1,2, quasiplanar graphs, and k^+-real face graphs. In some cases (1-bend and 2-bend RAC-graphs and fan-crossing/fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.
Název v anglickém jazyce
The Density Formula : One Lemma to Bound Them All
Popis výsledku anglicky
We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1,2, fan-crossing/fan-planar graphs, k-bend RAC-graphs with k = 0,1,2, quasiplanar graphs, and k^+-real face graphs. In some cases (1-bend and 2-bend RAC-graphs and fan-crossing/fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX23-04949X" target="_blank" >GX23-04949X: Stěžejní otázky diskrétní geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics
ISBN
978-3-95977-343-0
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
17
Strana od-do
1-17
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum für Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Technische Universität Wien
Datum konání akce
18. 9. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—