Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491138" target="_blank" >RIV/00216208:11320/24:10491138 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b03G2g.v.1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b03G2g.v.1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/202450922" target="_blank" >10.1051/0004-6361/202450922</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion

  • Popis výsledku v původním jazyce

    Context. Pebbles drifting past a disk-embedded low-mass planet develop asymmetries in their distribution and exert a substantial gravitational torque on the planet, thus modifying its migration rate. Aims. Our aim is to assess how the distribution of pebbles and the resulting torque change in the presence of pebble accretion, focusing on its 2D regime. Methods. First, we performed 2D high-resolution multi-fluid simulations with FARGO3D but found that they are impractical for resolving pebble accretion due to the smoothing of the planetary gravitational potential. To remove the smoothing and directly trace pebbles accreted by the planet, we developed a new code, DENEB, which evolves an ensemble of pebbles, represented by Lagrangian superparticles, in a steady-state gaseous background. Results. For small and moderate Stokes numbers, St less than or similar to 0.1, pebble accretion creates two underdense regions with a front-rear asymmetry with respect to the planet. The underdensity trailing the planet is more extended. The resulting excess of pebble mass in front of the planet then makes the pebble torque positive and capable of outperforming the negative gas torque. Pebble accretion thus enables outward migration (previously thought to occur mainly for St greater than or similar to 0.1) in a larger portion of the parameter space. It occurs for the planet mass M-pl less than or similar to 3 M-circle plus and for all the Stokes numbers considered in our study, St is an element of [10(-2), 0.785], assuming a pebble-to-gas mass ratio of Z = 0.01. Conclusions. If some of the observed planets underwent outward pebble-driven migration during their accretion, the formation sites of their progenitor embryos could have differed greatly from the usual predictions of planet formation models. To enable an update of the respective models, we provide a scaling law for the pebble torque that can be readily incorporated in N-body simulations.

  • Název v anglickém jazyce

    Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion

  • Popis výsledku anglicky

    Context. Pebbles drifting past a disk-embedded low-mass planet develop asymmetries in their distribution and exert a substantial gravitational torque on the planet, thus modifying its migration rate. Aims. Our aim is to assess how the distribution of pebbles and the resulting torque change in the presence of pebble accretion, focusing on its 2D regime. Methods. First, we performed 2D high-resolution multi-fluid simulations with FARGO3D but found that they are impractical for resolving pebble accretion due to the smoothing of the planetary gravitational potential. To remove the smoothing and directly trace pebbles accreted by the planet, we developed a new code, DENEB, which evolves an ensemble of pebbles, represented by Lagrangian superparticles, in a steady-state gaseous background. Results. For small and moderate Stokes numbers, St less than or similar to 0.1, pebble accretion creates two underdense regions with a front-rear asymmetry with respect to the planet. The underdensity trailing the planet is more extended. The resulting excess of pebble mass in front of the planet then makes the pebble torque positive and capable of outperforming the negative gas torque. Pebble accretion thus enables outward migration (previously thought to occur mainly for St greater than or similar to 0.1) in a larger portion of the parameter space. It occurs for the planet mass M-pl less than or similar to 3 M-circle plus and for all the Stokes numbers considered in our study, St is an element of [10(-2), 0.785], assuming a pebble-to-gas mass ratio of Z = 0.01. Conclusions. If some of the observed planets underwent outward pebble-driven migration during their accretion, the formation sites of their progenitor embryos could have differed greatly from the usual predictions of planet formation models. To enable an update of the respective models, we provide a scaling law for the pebble torque that can be readily incorporated in N-body simulations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10308 - Astronomy (including astrophysics,space science)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-11058S" target="_blank" >GA21-11058S: Raný orbitální a chemický vývoj planetárních soustav</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Astronomy &amp; Astrophysics

  • ISSN

    0004-6361

  • e-ISSN

    1432-0746

  • Svazek periodika

    690

  • Číslo periodika v rámci svazku

    říjen

  • Stát vydavatele periodika

    FR - Francouzská republika

  • Počet stran výsledku

    17

  • Strana od-do

    A41

  • Kód UT WoS článku

    001321174100011

  • EID výsledku v databázi Scopus

    2-s2.0-85206304754