Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491138" target="_blank" >RIV/00216208:11320/24:10491138 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b03G2g.v.1" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b03G2g.v.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/202450922" target="_blank" >10.1051/0004-6361/202450922</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion
Popis výsledku v původním jazyce
Context. Pebbles drifting past a disk-embedded low-mass planet develop asymmetries in their distribution and exert a substantial gravitational torque on the planet, thus modifying its migration rate. Aims. Our aim is to assess how the distribution of pebbles and the resulting torque change in the presence of pebble accretion, focusing on its 2D regime. Methods. First, we performed 2D high-resolution multi-fluid simulations with FARGO3D but found that they are impractical for resolving pebble accretion due to the smoothing of the planetary gravitational potential. To remove the smoothing and directly trace pebbles accreted by the planet, we developed a new code, DENEB, which evolves an ensemble of pebbles, represented by Lagrangian superparticles, in a steady-state gaseous background. Results. For small and moderate Stokes numbers, St less than or similar to 0.1, pebble accretion creates two underdense regions with a front-rear asymmetry with respect to the planet. The underdensity trailing the planet is more extended. The resulting excess of pebble mass in front of the planet then makes the pebble torque positive and capable of outperforming the negative gas torque. Pebble accretion thus enables outward migration (previously thought to occur mainly for St greater than or similar to 0.1) in a larger portion of the parameter space. It occurs for the planet mass M-pl less than or similar to 3 M-circle plus and for all the Stokes numbers considered in our study, St is an element of [10(-2), 0.785], assuming a pebble-to-gas mass ratio of Z = 0.01. Conclusions. If some of the observed planets underwent outward pebble-driven migration during their accretion, the formation sites of their progenitor embryos could have differed greatly from the usual predictions of planet formation models. To enable an update of the respective models, we provide a scaling law for the pebble torque that can be readily incorporated in N-body simulations.
Název v anglickém jazyce
Pebble-driven migration of low-mass planets in the 2D regime of pebble accretion
Popis výsledku anglicky
Context. Pebbles drifting past a disk-embedded low-mass planet develop asymmetries in their distribution and exert a substantial gravitational torque on the planet, thus modifying its migration rate. Aims. Our aim is to assess how the distribution of pebbles and the resulting torque change in the presence of pebble accretion, focusing on its 2D regime. Methods. First, we performed 2D high-resolution multi-fluid simulations with FARGO3D but found that they are impractical for resolving pebble accretion due to the smoothing of the planetary gravitational potential. To remove the smoothing and directly trace pebbles accreted by the planet, we developed a new code, DENEB, which evolves an ensemble of pebbles, represented by Lagrangian superparticles, in a steady-state gaseous background. Results. For small and moderate Stokes numbers, St less than or similar to 0.1, pebble accretion creates two underdense regions with a front-rear asymmetry with respect to the planet. The underdensity trailing the planet is more extended. The resulting excess of pebble mass in front of the planet then makes the pebble torque positive and capable of outperforming the negative gas torque. Pebble accretion thus enables outward migration (previously thought to occur mainly for St greater than or similar to 0.1) in a larger portion of the parameter space. It occurs for the planet mass M-pl less than or similar to 3 M-circle plus and for all the Stokes numbers considered in our study, St is an element of [10(-2), 0.785], assuming a pebble-to-gas mass ratio of Z = 0.01. Conclusions. If some of the observed planets underwent outward pebble-driven migration during their accretion, the formation sites of their progenitor embryos could have differed greatly from the usual predictions of planet formation models. To enable an update of the respective models, we provide a scaling law for the pebble torque that can be readily incorporated in N-body simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-11058S" target="_blank" >GA21-11058S: Raný orbitální a chemický vývoj planetárních soustav</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Svazek periodika
690
Číslo periodika v rámci svazku
říjen
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
17
Strana od-do
A41
Kód UT WoS článku
001321174100011
EID výsledku v databázi Scopus
2-s2.0-85206304754