RECONFIGURATION OF NON-CROSSING SPANNING TREES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491483" target="_blank" >RIV/00216208:11320/24:10491483 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2hwut~J5-4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2hwut~J5-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.20382/jocg.v15i1a9" target="_blank" >10.20382/jocg.v15i1a9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
RECONFIGURATION OF NON-CROSSING SPANNING TREES
Popis výsledku v původním jazyce
For a set P of n points in the plane in general position, a non-crossing spanning tree is a spanning tree of the points where every edge is a straight-line segment between a pair of points and no two edges intersect except at a common endpoint. We study the problem of reconfiguring one non-crossing spanning tree of P to another using a sequence of flips where each flip removes one edge and adds one new edge so that the result is again a non-crossing spanning tree of P. There is a known upper bound that 2n-4 flips suffice [Avis and Fukuda, 1996] and a lower bound that 1.5n-5 flips are sometimes necessary. We give improved bounds that depend on how similar the two trees are. Let d be the number of edges in the final tree but not the initial tree, so at least d flips are required. For points in convex position, we prove an upper bound of 2 d- Q(log d) flips. For general point sets we give a reconfiguration algorithm that uses at most 2 n- 4 flips but reduces that to d + n/2- 1 <= 1.5n- 2 flips when one tree is a path and either the points are in convex position or the path is monotone in some direction. We also examine whether the happy edges (those common to the initial and final trees) need to flip, and we use exhaustive search to find exact minimum flip distances for small point sets.
Název v anglickém jazyce
RECONFIGURATION OF NON-CROSSING SPANNING TREES
Popis výsledku anglicky
For a set P of n points in the plane in general position, a non-crossing spanning tree is a spanning tree of the points where every edge is a straight-line segment between a pair of points and no two edges intersect except at a common endpoint. We study the problem of reconfiguring one non-crossing spanning tree of P to another using a sequence of flips where each flip removes one edge and adds one new edge so that the result is again a non-crossing spanning tree of P. There is a known upper bound that 2n-4 flips suffice [Avis and Fukuda, 1996] and a lower bound that 1.5n-5 flips are sometimes necessary. We give improved bounds that depend on how similar the two trees are. Let d be the number of edges in the final tree but not the initial tree, so at least d flips are required. For points in convex position, we prove an upper bound of 2 d- Q(log d) flips. For general point sets we give a reconfiguration algorithm that uses at most 2 n- 4 flips but reduces that to d + n/2- 1 <= 1.5n- 2 flips when one tree is a path and either the points are in convex position or the path is monotone in some direction. We also examine whether the happy edges (those common to the initial and final trees) need to flip, and we use exhaustive search to find exact minimum flip distances for small point sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Geometry
ISSN
1920-180X
e-ISSN
1920-180X
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
30
Strana od-do
224-253
Kód UT WoS článku
001380579300003
EID výsledku v databázi Scopus
2-s2.0-85217828372