How Gender Interacts with Political Values: A Case Study on Czech BERT Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492840" target="_blank" >RIV/00216208:11320/24:10492840 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/25:WP4KZUSQ
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How Gender Interacts with Political Values: A Case Study on Czech BERT Models
Popis výsledku v původním jazyce
Neural language models, which reach state-of-the-art results on most natural language processing tasks, are trained on large text corpora that inevitably contain value-burdened content and often capture undesirable biases, which the models reflect. This case study focuses on the political biases of pre-trained encoders in Czech and compares them with a representative value survey. Because Czech is a gendered language, we also measure how the grammatical gender coincides with responses to men and women in the survey. We introduce a novel method for measuring the model's perceived political values. We find that the models do not assign statement probability following value-driven reasoning, and there is no systematic difference between feminine and masculine sentences. We conclude that BERT-sized models do not manifest systematic alignment with political values and that the biases observed in the models are rather due to superficial imitation of training data patterns than systematic value beliefs encod
Název v anglickém jazyce
How Gender Interacts with Political Values: A Case Study on Czech BERT Models
Popis výsledku anglicky
Neural language models, which reach state-of-the-art results on most natural language processing tasks, are trained on large text corpora that inevitably contain value-burdened content and often capture undesirable biases, which the models reflect. This case study focuses on the political biases of pre-trained encoders in Czech and compares them with a representative value survey. Because Czech is a gendered language, we also measure how the grammatical gender coincides with responses to men and women in the survey. We introduce a novel method for measuring the model's perceived political values. We find that the models do not assign statement probability following value-driven reasoning, and there is no systematic difference between feminine and masculine sentences. We conclude that BERT-sized models do not manifest systematic alignment with political values and that the biases observed in the models are rather due to superficial imitation of training data patterns than systematic value beliefs encod
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
ISBN
978-2-493-81410-4
ISSN
2522-2686
e-ISSN
—
Počet stran výsledku
8
Strana od-do
3038-3045
Název nakladatele
European Language Resources Association
Místo vydání
Torino, Italy
Místo konání akce
Torino, Italy
Datum konání akce
22. 5. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—