Quantifying gender bias towards politicians in cross-lingual language models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3AZ5U4IK2E" target="_blank" >RIV/00216208:11320/23:Z5U4IK2E - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277640" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277640</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0277640" target="_blank" >10.1371/journal.pone.0277640</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying gender bias towards politicians in cross-lingual language models
Popis výsledku v původním jazyce
"Recent research has demonstrated that large pre-trained language models reflect societal biases expressed in natural language. The present paper introduces a simple method for probing language models to conduct a multilingual study of gender bias towards politicians. We quantify the usage of adjectives and verbs generated by language models surrounding the names of politicians as a function of their gender. To this end, we curate a dataset of 250k politicians worldwide, including their names and gender. Our study is conducted in seven languages across six different language modeling architectures. The results demonstrate that pre-trained language models’ stance towards politicians varies strongly across analyzed languages. We find that while some words such as dead, and designated are associated with both male and female politicians, a few specific words such as beautiful and divorced are predominantly associated with female politicians. Finally, and contrary to previous findings, our study suggests that larger language models do not tend to be significantly more gender-biased than smaller ones."
Název v anglickém jazyce
Quantifying gender bias towards politicians in cross-lingual language models
Popis výsledku anglicky
"Recent research has demonstrated that large pre-trained language models reflect societal biases expressed in natural language. The present paper introduces a simple method for probing language models to conduct a multilingual study of gender bias towards politicians. We quantify the usage of adjectives and verbs generated by language models surrounding the names of politicians as a function of their gender. To this end, we curate a dataset of 250k politicians worldwide, including their names and gender. Our study is conducted in seven languages across six different language modeling architectures. The results demonstrate that pre-trained language models’ stance towards politicians varies strongly across analyzed languages. We find that while some words such as dead, and designated are associated with both male and female politicians, a few specific words such as beautiful and divorced are predominantly associated with female politicians. Finally, and contrary to previous findings, our study suggests that larger language models do not tend to be significantly more gender-biased than smaller ones."
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
"Plos one"
ISSN
1932-6203
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—