Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492898" target="_blank" >RIV/00216208:11320/24:10492898 - isvavai.cz</a>
Výsledek na webu
<a href="https://aclanthology.org/2024.alvr-1.9.pdf" target="_blank" >https://aclanthology.org/2024.alvr-1.9.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples
Popis výsledku v původním jazyce
Current vision-language models leveraging contrastive learning often face limitations in developing fine-grained conceptual understanding. This is due to random negative samples during pretraining, causing almost exclusively very dissimilar concepts to be compared in the loss function. Consequently, the models struggle with fine-grained semantic differences. To address this problem, we introduce a novel pretraining method incorporating synthetic hard negative text examples. The hard negatives replace terms corresponding to visual concepts, leading to a more fine-grained visual and textual concept alignment. Further, we introduce InpaintCOCO, a new challenging dataset for assessing the fine-grained alignment of colors, objects, and sizes in vision-language models. We created the dataset using generative inpainting from COCO images by changing the visual concepts so that the images no longer match their original captions. Our results show significant improvements in fine-grained concept understanding ac
Název v anglickém jazyce
Enhancing Conceptual Understanding in Multimodal Contrastive Learning through Hard Negative Samples
Popis výsledku anglicky
Current vision-language models leveraging contrastive learning often face limitations in developing fine-grained conceptual understanding. This is due to random negative samples during pretraining, causing almost exclusively very dissimilar concepts to be compared in the loss function. Consequently, the models struggle with fine-grained semantic differences. To address this problem, we introduce a novel pretraining method incorporating synthetic hard negative text examples. The hard negatives replace terms corresponding to visual concepts, leading to a more fine-grained visual and textual concept alignment. Further, we introduce InpaintCOCO, a new challenging dataset for assessing the fine-grained alignment of colors, objects, and sizes in vision-language models. We created the dataset using generative inpainting from COCO images by changing the visual concepts so that the images no longer match their original captions. Our results show significant improvements in fine-grained concept understanding ac
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 3rd Workshop on Advances in Language and Vision Research: Proceedings of the Workshop
ISBN
979-8-89176-153-7
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
102-115
Název nakladatele
Association for Computational Linguistics (ACL)
Místo vydání
Kerrville, TX, USA
Místo konání akce
Bangkok, Thailand
Datum konání akce
16. 8. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—