The Hamilton Compression of Highly Symmetric Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493093" target="_blank" >RIV/00216208:11320/24:10493093 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2N42.QvDcd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2N42.QvDcd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00026-023-00674-y" target="_blank" >10.1007/s00026-023-00674-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Hamilton Compression of Highly Symmetric Graphs
Popis výsledku v původním jazyce
We say that a Hamilton cycle C = (x(1),..., x(n)) in a graph G is k-symmetric, if the mapping x(i) -> x(i)+ (n/k) for all i = 1,..., n, where indices are considered modulo n, is an automorphism of G. In other words, if we lay out the vertices x(1),..., x(n) equidistantly on a circle and draw the edges of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information about the graph is compressed into a 360 degrees/k wedge of the drawing. The maximum k for which there exists a k-symmetric Hamilton cycle in G is referred to as the Hamilton compression of G. We investigate the Hamilton compression of four different families of vertex-transitive graphs, namely hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases, we determine their Hamilton compression exactly, and in other cases, we provide close lower and upper bounds. The constructed cycles have a much higher compression than several classical Gray codes known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and permutations that have few tracks and/or that are balanced.
Název v anglickém jazyce
The Hamilton Compression of Highly Symmetric Graphs
Popis výsledku anglicky
We say that a Hamilton cycle C = (x(1),..., x(n)) in a graph G is k-symmetric, if the mapping x(i) -> x(i)+ (n/k) for all i = 1,..., n, where indices are considered modulo n, is an automorphism of G. In other words, if we lay out the vertices x(1),..., x(n) equidistantly on a circle and draw the edges of G as straight lines, then the drawing of G has k-fold rotational symmetry, i.e., all information about the graph is compressed into a 360 degrees/k wedge of the drawing. The maximum k for which there exists a k-symmetric Hamilton cycle in G is referred to as the Hamilton compression of G. We investigate the Hamilton compression of four different families of vertex-transitive graphs, namely hypercubes, Johnson graphs, permutahedra and Cayley graphs of abelian groups. In several cases, we determine their Hamilton compression exactly, and in other cases, we provide close lower and upper bounds. The constructed cycles have a much higher compression than several classical Gray codes known from the literature. Our constructions also yield Gray codes for bitstrings, combinations and permutations that have few tracks and/or that are balanced.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-15272S" target="_blank" >GA22-15272S: Principy kombinatorického generování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Combinatorics
ISSN
0218-0006
e-ISSN
0219-3094
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
59
Strana od-do
379-437
Kód UT WoS článku
001123435000001
EID výsledku v databázi Scopus
2-s2.0-85179724801